mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-28 15:51:07 +00:00
220622dde5
This patch adds a new macro, libm_alias_finite, to define all _finite symbol. It sets all _finite symbol as compat symbol based on its first version (obtained from the definition at built generated first-versions.h). The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need special treatment in code that is shared between long double and float128. It is done by adding a list, similar to internal symbol redifinition, on sysdeps/ieee754/float128/float128_private.h. Alpha also needs some tricky changes to ensure we still emit 2 compat symbols for sqrt(f). Passes buildmanyglibc. Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
354 lines
8.8 KiB
C
354 lines
8.8 KiB
C
/* @(#)e_jn.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/*
|
|
* __ieee754_jn(n, x), __ieee754_yn(n, x)
|
|
* floating point Bessel's function of the 1st and 2nd kind
|
|
* of order n
|
|
*
|
|
* Special cases:
|
|
* y0(0)=y1(0)=yn(n,0) = -inf with overflow signal;
|
|
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
|
* Note 2. About jn(n,x), yn(n,x)
|
|
* For n=0, j0(x) is called,
|
|
* for n=1, j1(x) is called,
|
|
* for n<x, forward recursion us used starting
|
|
* from values of j0(x) and j1(x).
|
|
* for n>x, a continued fraction approximation to
|
|
* j(n,x)/j(n-1,x) is evaluated and then backward
|
|
* recursion is used starting from a supposed value
|
|
* for j(n,x). The resulting value of j(0,x) is
|
|
* compared with the actual value to correct the
|
|
* supposed value of j(n,x).
|
|
*
|
|
* yn(n,x) is similar in all respects, except
|
|
* that forward recursion is used for all
|
|
* values of n>1.
|
|
*
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <math-narrow-eval.h>
|
|
#include <math_private.h>
|
|
#include <fenv_private.h>
|
|
#include <math-underflow.h>
|
|
#include <libm-alias-finite.h>
|
|
|
|
static const double
|
|
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
|
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
|
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
|
|
|
|
static const double zero = 0.00000000000000000000e+00;
|
|
|
|
double
|
|
__ieee754_jn (int n, double x)
|
|
{
|
|
int32_t i, hx, ix, lx, sgn;
|
|
double a, b, temp, di, ret;
|
|
double z, w;
|
|
|
|
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
|
* Thus, J(-n,x) = J(n,-x)
|
|
*/
|
|
EXTRACT_WORDS (hx, lx, x);
|
|
ix = 0x7fffffff & hx;
|
|
/* if J(n,NaN) is NaN */
|
|
if (__glibc_unlikely ((ix | ((uint32_t) (lx | -lx)) >> 31) > 0x7ff00000))
|
|
return x + x;
|
|
if (n < 0)
|
|
{
|
|
n = -n;
|
|
x = -x;
|
|
hx ^= 0x80000000;
|
|
}
|
|
if (n == 0)
|
|
return (__ieee754_j0 (x));
|
|
if (n == 1)
|
|
return (__ieee754_j1 (x));
|
|
sgn = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */
|
|
x = fabs (x);
|
|
{
|
|
SET_RESTORE_ROUND (FE_TONEAREST);
|
|
if (__glibc_unlikely ((ix | lx) == 0 || ix >= 0x7ff00000))
|
|
/* if x is 0 or inf */
|
|
return sgn == 1 ? -zero : zero;
|
|
else if ((double) n <= x)
|
|
{
|
|
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
|
if (ix >= 0x52D00000) /* x > 2**302 */
|
|
{ /* (x >> n**2)
|
|
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
* Let s=sin(x), c=cos(x),
|
|
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
*
|
|
* n sin(xn)*sqt2 cos(xn)*sqt2
|
|
* ----------------------------------
|
|
* 0 s-c c+s
|
|
* 1 -s-c -c+s
|
|
* 2 -s+c -c-s
|
|
* 3 s+c c-s
|
|
*/
|
|
double s;
|
|
double c;
|
|
__sincos (x, &s, &c);
|
|
switch (n & 3)
|
|
{
|
|
case 0: temp = c + s; break;
|
|
case 1: temp = -c + s; break;
|
|
case 2: temp = -c - s; break;
|
|
case 3: temp = c - s; break;
|
|
default: __builtin_unreachable ();
|
|
}
|
|
b = invsqrtpi * temp / sqrt (x);
|
|
}
|
|
else
|
|
{
|
|
a = __ieee754_j0 (x);
|
|
b = __ieee754_j1 (x);
|
|
for (i = 1; i < n; i++)
|
|
{
|
|
temp = b;
|
|
b = b * ((double) (i + i) / x) - a; /* avoid underflow */
|
|
a = temp;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (ix < 0x3e100000) /* x < 2**-29 */
|
|
{ /* x is tiny, return the first Taylor expansion of J(n,x)
|
|
* J(n,x) = 1/n!*(x/2)^n - ...
|
|
*/
|
|
if (n > 33) /* underflow */
|
|
b = zero;
|
|
else
|
|
{
|
|
temp = x * 0.5; b = temp;
|
|
for (a = one, i = 2; i <= n; i++)
|
|
{
|
|
a *= (double) i; /* a = n! */
|
|
b *= temp; /* b = (x/2)^n */
|
|
}
|
|
b = b / a;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* use backward recurrence */
|
|
/* x x^2 x^2
|
|
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
|
* 2n - 2(n+1) - 2(n+2)
|
|
*
|
|
* 1 1 1
|
|
* (for large x) = ---- ------ ------ .....
|
|
* 2n 2(n+1) 2(n+2)
|
|
* -- - ------ - ------ -
|
|
* x x x
|
|
*
|
|
* Let w = 2n/x and h=2/x, then the above quotient
|
|
* is equal to the continued fraction:
|
|
* 1
|
|
* = -----------------------
|
|
* 1
|
|
* w - -----------------
|
|
* 1
|
|
* w+h - ---------
|
|
* w+2h - ...
|
|
*
|
|
* To determine how many terms needed, let
|
|
* Q(0) = w, Q(1) = w(w+h) - 1,
|
|
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
|
* When Q(k) > 1e4 good for single
|
|
* When Q(k) > 1e9 good for double
|
|
* When Q(k) > 1e17 good for quadruple
|
|
*/
|
|
/* determine k */
|
|
double t, v;
|
|
double q0, q1, h, tmp; int32_t k, m;
|
|
w = (n + n) / (double) x; h = 2.0 / (double) x;
|
|
q0 = w; z = w + h; q1 = w * z - 1.0; k = 1;
|
|
while (q1 < 1.0e9)
|
|
{
|
|
k += 1; z += h;
|
|
tmp = z * q1 - q0;
|
|
q0 = q1;
|
|
q1 = tmp;
|
|
}
|
|
m = n + n;
|
|
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
|
t = one / (i / x - t);
|
|
a = t;
|
|
b = one;
|
|
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
|
* Hence, if n*(log(2n/x)) > ...
|
|
* single 8.8722839355e+01
|
|
* double 7.09782712893383973096e+02
|
|
* long double 1.1356523406294143949491931077970765006170e+04
|
|
* then recurrent value may overflow and the result is
|
|
* likely underflow to zero
|
|
*/
|
|
tmp = n;
|
|
v = two / x;
|
|
tmp = tmp * __ieee754_log (fabs (v * tmp));
|
|
if (tmp < 7.09782712893383973096e+02)
|
|
{
|
|
for (i = n - 1, di = (double) (i + i); i > 0; i--)
|
|
{
|
|
temp = b;
|
|
b *= di;
|
|
b = b / x - a;
|
|
a = temp;
|
|
di -= two;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = n - 1, di = (double) (i + i); i > 0; i--)
|
|
{
|
|
temp = b;
|
|
b *= di;
|
|
b = b / x - a;
|
|
a = temp;
|
|
di -= two;
|
|
/* scale b to avoid spurious overflow */
|
|
if (b > 1e100)
|
|
{
|
|
a /= b;
|
|
t /= b;
|
|
b = one;
|
|
}
|
|
}
|
|
}
|
|
/* j0() and j1() suffer enormous loss of precision at and
|
|
* near zero; however, we know that their zero points never
|
|
* coincide, so just choose the one further away from zero.
|
|
*/
|
|
z = __ieee754_j0 (x);
|
|
w = __ieee754_j1 (x);
|
|
if (fabs (z) >= fabs (w))
|
|
b = (t * z / b);
|
|
else
|
|
b = (t * w / a);
|
|
}
|
|
}
|
|
if (sgn == 1)
|
|
ret = -b;
|
|
else
|
|
ret = b;
|
|
ret = math_narrow_eval (ret);
|
|
}
|
|
if (ret == 0)
|
|
{
|
|
ret = math_narrow_eval (copysign (DBL_MIN, ret) * DBL_MIN);
|
|
__set_errno (ERANGE);
|
|
}
|
|
else
|
|
math_check_force_underflow (ret);
|
|
return ret;
|
|
}
|
|
libm_alias_finite (__ieee754_jn, __jn)
|
|
|
|
double
|
|
__ieee754_yn (int n, double x)
|
|
{
|
|
int32_t i, hx, ix, lx;
|
|
int32_t sign;
|
|
double a, b, temp, ret;
|
|
|
|
EXTRACT_WORDS (hx, lx, x);
|
|
ix = 0x7fffffff & hx;
|
|
/* if Y(n,NaN) is NaN */
|
|
if (__glibc_unlikely ((ix | ((uint32_t) (lx | -lx)) >> 31) > 0x7ff00000))
|
|
return x + x;
|
|
sign = 1;
|
|
if (n < 0)
|
|
{
|
|
n = -n;
|
|
sign = 1 - ((n & 1) << 1);
|
|
}
|
|
if (n == 0)
|
|
return (__ieee754_y0 (x));
|
|
if (__glibc_unlikely ((ix | lx) == 0))
|
|
return -sign / zero;
|
|
/* -inf and overflow exception. */;
|
|
if (__glibc_unlikely (hx < 0))
|
|
return zero / (zero * x);
|
|
{
|
|
SET_RESTORE_ROUND (FE_TONEAREST);
|
|
if (n == 1)
|
|
{
|
|
ret = sign * __ieee754_y1 (x);
|
|
goto out;
|
|
}
|
|
if (__glibc_unlikely (ix == 0x7ff00000))
|
|
return zero;
|
|
if (ix >= 0x52D00000) /* x > 2**302 */
|
|
{ /* (x >> n**2)
|
|
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
* Let s=sin(x), c=cos(x),
|
|
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
*
|
|
* n sin(xn)*sqt2 cos(xn)*sqt2
|
|
* ----------------------------------
|
|
* 0 s-c c+s
|
|
* 1 -s-c -c+s
|
|
* 2 -s+c -c-s
|
|
* 3 s+c c-s
|
|
*/
|
|
double c;
|
|
double s;
|
|
__sincos (x, &s, &c);
|
|
switch (n & 3)
|
|
{
|
|
case 0: temp = s - c; break;
|
|
case 1: temp = -s - c; break;
|
|
case 2: temp = -s + c; break;
|
|
case 3: temp = s + c; break;
|
|
default: __builtin_unreachable ();
|
|
}
|
|
b = invsqrtpi * temp / sqrt (x);
|
|
}
|
|
else
|
|
{
|
|
uint32_t high;
|
|
a = __ieee754_y0 (x);
|
|
b = __ieee754_y1 (x);
|
|
/* quit if b is -inf */
|
|
GET_HIGH_WORD (high, b);
|
|
for (i = 1; i < n && high != 0xfff00000; i++)
|
|
{
|
|
temp = b;
|
|
b = ((double) (i + i) / x) * b - a;
|
|
GET_HIGH_WORD (high, b);
|
|
a = temp;
|
|
}
|
|
/* If B is +-Inf, set up errno accordingly. */
|
|
if (!isfinite (b))
|
|
__set_errno (ERANGE);
|
|
}
|
|
if (sign > 0)
|
|
ret = b;
|
|
else
|
|
ret = -b;
|
|
}
|
|
out:
|
|
if (isinf (ret))
|
|
ret = copysign (DBL_MAX, ret) * DBL_MAX;
|
|
return ret;
|
|
}
|
|
libm_alias_finite (__ieee754_yn, __yn)
|