mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-27 05:00:15 +00:00
137 lines
3.6 KiB
C
137 lines
3.6 KiB
C
/* Return arc hyperbolic tangent for a complex float type.
|
|
Copyright (C) 1997-2020 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <math-underflow.h>
|
|
#include <float.h>
|
|
|
|
CFLOAT
|
|
M_DECL_FUNC (__catanh) (CFLOAT x)
|
|
{
|
|
CFLOAT res;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
|
|
{
|
|
if (icls == FP_INFINITE)
|
|
{
|
|
__real__ res = M_COPYSIGN (0, __real__ x);
|
|
__imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x);
|
|
}
|
|
else if (rcls == FP_INFINITE || rcls == FP_ZERO)
|
|
{
|
|
__real__ res = M_COPYSIGN (0, __real__ x);
|
|
if (icls >= FP_ZERO)
|
|
__imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x);
|
|
else
|
|
__imag__ res = M_NAN;
|
|
}
|
|
else
|
|
{
|
|
__real__ res = M_NAN;
|
|
__imag__ res = M_NAN;
|
|
}
|
|
}
|
|
else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
|
|
{
|
|
res = x;
|
|
}
|
|
else
|
|
{
|
|
if (M_FABS (__real__ x) >= 16 / M_EPSILON
|
|
|| M_FABS (__imag__ x) >= 16 / M_EPSILON)
|
|
{
|
|
__imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x);
|
|
if (M_FABS (__imag__ x) <= 1)
|
|
__real__ res = 1 / __real__ x;
|
|
else if (M_FABS (__real__ x) <= 1)
|
|
__real__ res = __real__ x / __imag__ x / __imag__ x;
|
|
else
|
|
{
|
|
FLOAT h = M_HYPOT (__real__ x / 2, __imag__ x / 2);
|
|
__real__ res = __real__ x / h / h / 4;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (M_FABS (__real__ x) == 1
|
|
&& M_FABS (__imag__ x) < M_EPSILON * M_EPSILON)
|
|
__real__ res = (M_COPYSIGN (M_LIT (0.5), __real__ x)
|
|
* ((FLOAT) M_MLIT (M_LN2)
|
|
- M_LOG (M_FABS (__imag__ x))));
|
|
else
|
|
{
|
|
FLOAT i2 = 0;
|
|
if (M_FABS (__imag__ x) >= M_EPSILON * M_EPSILON)
|
|
i2 = __imag__ x * __imag__ x;
|
|
|
|
FLOAT num = 1 + __real__ x;
|
|
num = i2 + num * num;
|
|
|
|
FLOAT den = 1 - __real__ x;
|
|
den = i2 + den * den;
|
|
|
|
FLOAT f = num / den;
|
|
if (f < M_LIT (0.5))
|
|
__real__ res = M_LIT (0.25) * M_LOG (f);
|
|
else
|
|
{
|
|
num = 4 * __real__ x;
|
|
__real__ res = M_LIT (0.25) * M_LOG1P (num / den);
|
|
}
|
|
}
|
|
|
|
FLOAT absx, absy, den;
|
|
|
|
absx = M_FABS (__real__ x);
|
|
absy = M_FABS (__imag__ x);
|
|
if (absx < absy)
|
|
{
|
|
FLOAT t = absx;
|
|
absx = absy;
|
|
absy = t;
|
|
}
|
|
|
|
if (absy < M_EPSILON / 2)
|
|
{
|
|
den = (1 - absx) * (1 + absx);
|
|
if (den == 0)
|
|
den = 0;
|
|
}
|
|
else if (absx >= 1)
|
|
den = (1 - absx) * (1 + absx) - absy * absy;
|
|
else if (absx >= M_LIT (0.75) || absy >= M_LIT (0.5))
|
|
den = -M_SUF (__x2y2m1) (absx, absy);
|
|
else
|
|
den = (1 - absx) * (1 + absx) - absy * absy;
|
|
|
|
__imag__ res = M_LIT (0.5) * M_ATAN2 (2 * __imag__ x, den);
|
|
}
|
|
|
|
math_check_force_underflow_complex (res);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
declare_mgen_alias (__catanh, catanh)
|