glibc/sysdeps/x86_64/multiarch/memrchr-evex.S
Noah Goldstein b4209615a0 x86: Optimize memrchr-evex.S
The new code:
    1. prioritizes smaller user-arg lengths more.
    2. optimizes target placement more carefully
    3. reuses logic more
    4. fixes up various inefficiencies in the logic. The biggest
       case here is the `lzcnt` logic for checking returns which
       saves either a branch or multiple instructions.

The total code size saving is: 263 bytes
Geometric Mean of all benchmarks New / Old: 0.755

Regressions:
There are some regressions. Particularly where the length (user arg
length) is large but the position of the match char is near the
beginning of the string (in first VEC). This case has roughly a
20% regression.

This is because the new logic gives the hot path for immediate matches
to shorter lengths (the more common input). This case has roughly
a 35% speedup.

Full xcheck passes on x86_64.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2022-06-07 13:10:24 -07:00

335 lines
7.6 KiB
ArmAsm

/* memrchr optimized with 256-bit EVEX instructions.
Copyright (C) 2021-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#if IS_IN (libc)
# include <sysdep.h>
# include "evex256-vecs.h"
# if VEC_SIZE != 32
# error "VEC_SIZE != 32 unimplemented"
# endif
# ifndef MEMRCHR
# define MEMRCHR __memrchr_evex
# endif
# define PAGE_SIZE 4096
# define VECMATCH VEC(0)
.section SECTION(.text), "ax", @progbits
ENTRY_P2ALIGN(MEMRCHR, 6)
# ifdef __ILP32__
/* Clear upper bits. */
and %RDX_LP, %RDX_LP
# else
test %RDX_LP, %RDX_LP
# endif
jz L(zero_0)
/* Get end pointer. Minus one for two reasons. 1) It is necessary for a
correct page cross check and 2) it correctly sets up end ptr to be
subtract by lzcnt aligned. */
leaq -1(%rdi, %rdx), %rax
vpbroadcastb %esi, %VECMATCH
/* Check if we can load 1x VEC without cross a page. */
testl $(PAGE_SIZE - VEC_SIZE), %eax
jz L(page_cross)
/* Don't use rax for pointer here because EVEX has better encoding with
offset % VEC_SIZE == 0. */
vpcmpb $0, -(VEC_SIZE)(%rdi, %rdx), %VECMATCH, %k0
kmovd %k0, %ecx
/* Fall through for rdx (len) <= VEC_SIZE (expect small sizes). */
cmpq $VEC_SIZE, %rdx
ja L(more_1x_vec)
L(ret_vec_x0_test):
/* If ecx is zero (no matches) lzcnt will set it 32 (VEC_SIZE) which
will guarantee edx (len) is less than it. */
lzcntl %ecx, %ecx
cmpl %ecx, %edx
jle L(zero_0)
subq %rcx, %rax
ret
/* Fits in aligning bytes of first cache line. */
L(zero_0):
xorl %eax, %eax
ret
.p2align 4,, 9
L(ret_vec_x0_dec):
decq %rax
L(ret_vec_x0):
lzcntl %ecx, %ecx
subq %rcx, %rax
ret
.p2align 4,, 10
L(more_1x_vec):
testl %ecx, %ecx
jnz L(ret_vec_x0)
/* Align rax (pointer to string). */
andq $-VEC_SIZE, %rax
/* Recompute length after aligning. */
movq %rax, %rdx
/* Need no matter what. */
vpcmpb $0, -(VEC_SIZE)(%rax), %VECMATCH, %k0
kmovd %k0, %ecx
subq %rdi, %rdx
cmpq $(VEC_SIZE * 2), %rdx
ja L(more_2x_vec)
L(last_2x_vec):
/* Must dec rax because L(ret_vec_x0_test) expects it. */
decq %rax
cmpl $VEC_SIZE, %edx
jbe L(ret_vec_x0_test)
testl %ecx, %ecx
jnz L(ret_vec_x0)
/* Don't use rax for pointer here because EVEX has better encoding with
offset % VEC_SIZE == 0. */
vpcmpb $0, -(VEC_SIZE * 2)(%rdi, %rdx), %VECMATCH, %k0
kmovd %k0, %ecx
/* NB: 64-bit lzcnt. This will naturally add 32 to position. */
lzcntq %rcx, %rcx
cmpl %ecx, %edx
jle L(zero_0)
subq %rcx, %rax
ret
/* Inexpensive place to put this regarding code size / target alignments
/ ICache NLP. Necessary for 2-byte encoding of jump to page cross
case which in turn is necessary for hot path (len <= VEC_SIZE) to fit
in first cache line. */
L(page_cross):
movq %rax, %rsi
andq $-VEC_SIZE, %rsi
vpcmpb $0, (%rsi), %VECMATCH, %k0
kmovd %k0, %r8d
/* Shift out negative alignment (because we are starting from endptr and
working backwards). */
movl %eax, %ecx
/* notl because eax already has endptr - 1. (-x = ~(x - 1)). */
notl %ecx
shlxl %ecx, %r8d, %ecx
cmpq %rdi, %rsi
ja L(more_1x_vec)
lzcntl %ecx, %ecx
cmpl %ecx, %edx
jle L(zero_1)
subq %rcx, %rax
ret
/* Continue creating zero labels that fit in aligning bytes and get
2-byte encoding / are in the same cache line as condition. */
L(zero_1):
xorl %eax, %eax
ret
.p2align 4,, 8
L(ret_vec_x1):
/* This will naturally add 32 to position. */
bsrl %ecx, %ecx
leaq -(VEC_SIZE * 2)(%rcx, %rax), %rax
ret
.p2align 4,, 8
L(more_2x_vec):
testl %ecx, %ecx
jnz L(ret_vec_x0_dec)
vpcmpb $0, -(VEC_SIZE * 2)(%rax), %VECMATCH, %k0
kmovd %k0, %ecx
testl %ecx, %ecx
jnz L(ret_vec_x1)
/* Need no matter what. */
vpcmpb $0, -(VEC_SIZE * 3)(%rax), %VECMATCH, %k0
kmovd %k0, %ecx
subq $(VEC_SIZE * 4), %rdx
ja L(more_4x_vec)
cmpl $(VEC_SIZE * -1), %edx
jle L(ret_vec_x2_test)
L(last_vec):
testl %ecx, %ecx
jnz L(ret_vec_x2)
/* Need no matter what. */
vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0
kmovd %k0, %ecx
lzcntl %ecx, %ecx
subq $(VEC_SIZE * 3 + 1), %rax
subq %rcx, %rax
cmpq %rax, %rdi
ja L(zero_1)
ret
.p2align 4,, 8
L(ret_vec_x2_test):
lzcntl %ecx, %ecx
subq $(VEC_SIZE * 2 + 1), %rax
subq %rcx, %rax
cmpq %rax, %rdi
ja L(zero_1)
ret
.p2align 4,, 8
L(ret_vec_x2):
bsrl %ecx, %ecx
leaq -(VEC_SIZE * 3)(%rcx, %rax), %rax
ret
.p2align 4,, 8
L(ret_vec_x3):
bsrl %ecx, %ecx
leaq -(VEC_SIZE * 4)(%rcx, %rax), %rax
ret
.p2align 4,, 8
L(more_4x_vec):
testl %ecx, %ecx
jnz L(ret_vec_x2)
vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0
kmovd %k0, %ecx
testl %ecx, %ecx
jnz L(ret_vec_x3)
/* Check if near end before re-aligning (otherwise might do an
unnecessary loop iteration). */
addq $-(VEC_SIZE * 4), %rax
cmpq $(VEC_SIZE * 4), %rdx
jbe L(last_4x_vec)
decq %rax
andq $-(VEC_SIZE * 4), %rax
movq %rdi, %rdx
/* Get endptr for loop in rdx. NB: Can't just do while rax > rdi because
lengths that overflow can be valid and break the comparison. */
andq $-(VEC_SIZE * 4), %rdx
.p2align 4
L(loop_4x_vec):
/* Store 1 were not-equals and 0 where equals in k1 (used to mask later
on). */
vpcmpb $4, (VEC_SIZE * 3)(%rax), %VECMATCH, %k1
/* VEC(2/3) will have zero-byte where we found a CHAR. */
vpxorq (VEC_SIZE * 2)(%rax), %VECMATCH, %VEC(2)
vpxorq (VEC_SIZE * 1)(%rax), %VECMATCH, %VEC(3)
vpcmpb $0, (VEC_SIZE * 0)(%rax), %VECMATCH, %k4
/* Combine VEC(2/3) with min and maskz with k1 (k1 has zero bit where
CHAR is found and VEC(2/3) have zero-byte where CHAR is found. */
vpminub %VEC(2), %VEC(3), %VEC(3){%k1}{z}
vptestnmb %VEC(3), %VEC(3), %k2
/* Any 1s and we found CHAR. */
kortestd %k2, %k4
jnz L(loop_end)
addq $-(VEC_SIZE * 4), %rax
cmpq %rdx, %rax
jne L(loop_4x_vec)
/* Need to re-adjust rdx / rax for L(last_4x_vec). */
subq $-(VEC_SIZE * 4), %rdx
movq %rdx, %rax
subl %edi, %edx
L(last_4x_vec):
/* Used no matter what. */
vpcmpb $0, (VEC_SIZE * -1)(%rax), %VECMATCH, %k0
kmovd %k0, %ecx
cmpl $(VEC_SIZE * 2), %edx
jbe L(last_2x_vec)
testl %ecx, %ecx
jnz L(ret_vec_x0_dec)
vpcmpb $0, (VEC_SIZE * -2)(%rax), %VECMATCH, %k0
kmovd %k0, %ecx
testl %ecx, %ecx
jnz L(ret_vec_x1)
/* Used no matter what. */
vpcmpb $0, (VEC_SIZE * -3)(%rax), %VECMATCH, %k0
kmovd %k0, %ecx
cmpl $(VEC_SIZE * 3), %edx
ja L(last_vec)
lzcntl %ecx, %ecx
subq $(VEC_SIZE * 2 + 1), %rax
subq %rcx, %rax
cmpq %rax, %rdi
jbe L(ret_1)
xorl %eax, %eax
L(ret_1):
ret
.p2align 4,, 6
L(loop_end):
kmovd %k1, %ecx
notl %ecx
testl %ecx, %ecx
jnz L(ret_vec_x0_end)
vptestnmb %VEC(2), %VEC(2), %k0
kmovd %k0, %ecx
testl %ecx, %ecx
jnz L(ret_vec_x1_end)
kmovd %k2, %ecx
kmovd %k4, %esi
/* Combine last 2 VEC matches. If ecx (VEC3) is zero (no CHAR in VEC3)
then it won't affect the result in esi (VEC4). If ecx is non-zero
then CHAR in VEC3 and bsrq will use that position. */
salq $32, %rcx
orq %rsi, %rcx
bsrq %rcx, %rcx
addq %rcx, %rax
ret
.p2align 4,, 4
L(ret_vec_x0_end):
addq $(VEC_SIZE), %rax
L(ret_vec_x1_end):
bsrl %ecx, %ecx
leaq (VEC_SIZE * 2)(%rax, %rcx), %rax
ret
END(MEMRCHR)
#endif