glibc/math/bits/mathcalls.h
Ulrich Drepper 4caef86ca6 Update.
1999-01-23  Ulrich Drepper  <drepper@cygnus.com>

	* nss/nss_files/files-XXX.c (internal_getent): Make sure the buffer has
	at least two bytes (not one).  Correct buflen parameter type.
	* nss/nss_files/files-alias.c (get_next_alias): Make sure buffer
	has at least two bytes.  Use fgets_unlocked instead of fgets.

	* ctype/ctype.h: Don't user __tolower directly for tolower
	implementation.  Use inline function which tests for the range
	first.  Make _tolower equivalent to old tolower macros.
	Likewise for toupper.
	* ctype/ctype.c: Change tolower/toupper definition accordingly.

	* argp/argp-help.c: Use _tolower instead of tolower if possible.
	* inet/ether_aton_r.c: Likewise.
	* inet/ether_line.c: Likewise.
	* inet/rcmd.c: Likewise.
	* intl/l10nflist.c: Likewise.
	* locale/programs/ld-collate.c: Likewise.
	* locale/programs/linereader.c: Likewise.
	* locale/programs/localedef.c: Likewise.
	* nis/nss_nis/nis-alias.c: Likewise.
	* nis/nss_nis/nis-network.c: Likewise.
	* posix/regex.c: Likewise.
	* resolv/inet_net_pton.c: Likewise.
	* stdio-common/printf_fp.c: Likewise.
	* stdio-common/vfscanf.c: Likewise.
	* sysdeps/generic/strcasestr.c: Likewise.

	* math/bits/mathcalls.h: Fix typo.
1999-01-23 22:17:17 +00:00

331 lines
10 KiB
C

/* Prototype declarations for math functions; helper file for <math.h>.
Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* NOTE: Because of the special way this file is used by <math.h>, this
file must NOT be protected from multiple inclusion as header files
usually are.
This file provides prototype declarations for the math functions.
Most functions are declared using the macro:
__MATHCALL (NAME,[_r], (ARGS...));
This means there is a function `NAME' returning `double' and a function
`NAMEf' returning `float'. Each place `_Mdouble_' appears in the
prototype, that is actually `double' in the prototype for `NAME' and
`float' in the prototype for `NAMEf'. Reentrant variant functions are
called `NAME_r' and `NAMEf_r'.
Functions returning other types like `int' are declared using the macro:
__MATHDECL (TYPE, NAME,[_r], (ARGS...));
This is just like __MATHCALL but for a function returning `TYPE'
instead of `_Mdouble_'. In all of these cases, there is still
both a `NAME' and a `NAMEf' that takes `float' arguments.
Note that there must be no whitespace before the argument passed for
NAME, to make token pasting work with -traditional. */
#ifndef _MATH_H
#error "Never include <bits/mathcalls.h> directly; include <math.h> instead."
#endif
/* Trigonometric functions. */
/* Arc cosine of X. */
__MATHCALL (acos,, (_Mdouble_ __x));
/* Arc sine of X. */
__MATHCALL (asin,, (_Mdouble_ __x));
/* Arc tangent of X. */
__MATHCALL (atan,, (_Mdouble_ __x));
/* Arc tangent of Y/X. */
__MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x));
/* Cosine of X. */
__MATHCALL (cos,, (_Mdouble_ __x));
/* Sine of X. */
__MATHCALL (sin,, (_Mdouble_ __x));
/* Tangent of X. */
__MATHCALL (tan,, (_Mdouble_ __x));
#ifdef __USE_GNU
/* Cosine and sine of X. */
__MATHDECL (void,sincos,,
(_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx));
#endif
/* Hyperbolic functions. */
/* Hyperbolic cosine of X. */
__MATHCALL (cosh,, (_Mdouble_ __x));
/* Hyperbolic sine of X. */
__MATHCALL (sinh,, (_Mdouble_ __x));
/* Hyperbolic tangent of X. */
__MATHCALL (tanh,, (_Mdouble_ __x));
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
/* Hyperbolic arc cosine of X. */
__MATHCALL (acosh,, (_Mdouble_ __x));
/* Hyperbolic arc sine of X. */
__MATHCALL (asinh,, (_Mdouble_ __x));
/* Hyperbolic arc tangent of X. */
__MATHCALL (atanh,, (_Mdouble_ __x));
#endif
/* Exponential and logarithmic functions. */
/* Exponential function of X. */
__MATHCALL (exp,, (_Mdouble_ __x));
#ifdef __USE_GNU
/* A function missing in all standards: compute exponent to base ten. */
__MATHCALL (exp10,, (_Mdouble_ __x));
/* Another name occasionally used. */
__MATHCALL (pow10,, (_Mdouble_ __x));
#endif
/* Break VALUE into a normalized fraction and an integral power of 2. */
__MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent));
/* X times (two to the EXP power). */
__MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent));
/* Natural logarithm of X. */
__MATHCALL (log,, (_Mdouble_ __x));
/* Base-ten logarithm of X. */
__MATHCALL (log10,, (_Mdouble_ __x));
/* Break VALUE into integral and fractional parts. */
__MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr));
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
/* Return exp(X) - 1. */
__MATHCALL (expm1,, (_Mdouble_ __x));
/* Return log(1 + X). */
__MATHCALL (log1p,, (_Mdouble_ __x));
/* Return the base 2 signed integral exponent of X. */
__MATHCALL (logb,, (_Mdouble_ __x));
#endif
#ifdef __USE_ISOC9X
/* Compute base-2 exponential of X. */
__MATHCALL (exp2,, (_Mdouble_ __x));
/* Compute base-2 logarithm of X. */
__MATHCALL (log2,, (_Mdouble_ __x));
#endif
/* Power functions. */
/* Return X to the Y power. */
__MATHCALL (pow,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return the square root of X. */
__MATHCALL (sqrt,, (_Mdouble_ __x));
#if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC9X
/* Return `sqrt(X*X + Y*Y)'. */
__MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y));
#endif
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
/* Return the cube root of X. */
__MATHCALL (cbrt,, (_Mdouble_ __x));
#endif
/* Nearest integer, absolute value, and remainder functions. */
/* Smallest integral value not less than X. */
__MATHCALL (ceil,, (_Mdouble_ __x));
/* Absolute value of X. */
__MATHCALLX (fabs,, (_Mdouble_ __x), (__const__));
/* Largest integer not greater than X. */
__MATHCALL (floor,, (_Mdouble_ __x));
/* Floating-point modulo remainder of X/Y. */
__MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return 0 if VALUE is finite or NaN, +1 if it
is +Infinity, -1 if it is -Infinity. */
__MATHDECL_1 (int,__isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));
#ifdef __USE_MISC
/* Return 0 if VALUE is finite or NaN, +1 if it
is +Infinity, -1 if it is -Infinity. */
__MATHDECL_1 (int,isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));
/* Return nonzero if VALUE is finite and not NaN. */
__MATHDECLX (int,finite,, (_Mdouble_ __value), (__const__));
/* Deal with an infinite or NaN result.
If ERROR is ERANGE, result is +Inf;
if ERROR is - ERANGE, result is -Inf;
otherwise result is NaN.
This will set `errno' to either ERANGE or EDOM,
and may return an infinity or NaN, or may do something else. */
__MATHCALLX (infnan,, (int __error), (__const__));
/* Return the remainder of X/Y. */
__MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return the fractional part of X after dividing out `ilogb (X)'. */
__MATHCALL (significand,, (_Mdouble_ __x));
#endif /* Use misc. */
#if defined __USE_MISC || defined __USE_ISOC9X
/* Return X with its signed changed to Y's. */
__MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
#endif
#ifdef __USE_ISOC9X
/* Return representation of NaN for double type. */
__MATHCALLX (nan,, (__const char *__tagb), (__const__));
#endif
#if defined __USE_MISC || defined __USE_XOPEN
/* Return nonzero if VALUE is not a number. */
__MATHDECLX (int,isnan,, (_Mdouble_ __value), (__const__));
/* Bessel functions. */
__MATHCALL (j0,, (_Mdouble_));
__MATHCALL (j1,, (_Mdouble_));
__MATHCALL (jn,, (int, _Mdouble_));
__MATHCALL (y0,, (_Mdouble_));
__MATHCALL (y1,, (_Mdouble_));
__MATHCALL (yn,, (int, _Mdouble_));
#endif
#if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC9X
/* Error and gamma functions. */
__MATHCALL (erf,, (_Mdouble_));
__MATHCALL (erfc,, (_Mdouble_));
__MATHCALL (lgamma,, (_Mdouble_));
__MATHCALL (tgamma,, (_Mdouble_));
#endif
#if defined __USE_MISC || defined __USE_XOPEN
/* Obsolete alias for `lgamma'. */
__MATHCALL (gamma,, (_Mdouble_));
#endif
#ifdef __USE_MISC
/* Reentrant version of lgamma. This function uses the global variable
`signgam'. The reentrant version instead takes a pointer and stores
the value through it. */
__MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp));
#endif
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
/* Return the integer nearest X in the direction of the
prevailing rounding mode. */
__MATHCALL (rint,, (_Mdouble_ __x));
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
__MATHCALLX (nextafter,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
# ifdef __USE_ISOC9X
__MATHCALLX (nexttoward,, (_Mdouble_ __x, long double __y), (__const__));
# endif
/* Return the remainder of integer divison X / Y with infinite precision. */
__MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
/* Return X times (2 to the Nth power). */
__MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));
#endif
/* Return X times (2 to the Nth power). */
__MATHCALL (scalbn,, (_Mdouble_ __x, int __n));
/* Return the binary exponent of X, which must be nonzero. */
__MATHDECL (int,ilogb,, (_Mdouble_ __x));
#endif
#ifdef __USE_ISOC9X
/* Return X times (2 to the Nth power). */
__MATHCALL (scalbln,, (_Mdouble_ __x, long int __n));
/* Round X to integral value in floating-point format using current
rounding direction, but do not raise inexact exception. */
__MATHCALL (nearbyint,, (_Mdouble_ __x));
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
__MATHCALL (round,, (_Mdouble_ __x));
/* Round X to the integral value in floating-point format nearest but
not larger in magnitude. */
__MATHCALLX (trunc,, (_Mdouble_ __x), (__const__));
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
and magnitude congruent `mod 2^n' to the magnitude of the integral
quotient x/y, with n >= 3. */
__MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo));
/* Conversion functions. */
/* Round X to nearest integral value according to current rounding
direction. */
__MATHDECL (long int,lrint,, (_Mdouble_ __x));
__MATHDECL (long long int,llrint,, (_Mdouble_ __x));
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
__MATHDECL (long int,lround,, (_Mdouble_ __x));
__MATHDECL (long long int,llround,, (_Mdouble_ __x));
/* Return positive difference between X and Y. */
__MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return maximum numeric value from X and Y. */
__MATHCALL (fmax,, (_Mdouble_ __x, _Mdouble_ __y));
/* Return minimum numeric value from X and Y. */
__MATHCALL (fmin,, (_Mdouble_ __x, _Mdouble_ __y));
/* Classify given number. */
__MATHDECL_1 (int, __fpclassify,, (_Mdouble_ __value))
__attribute__ ((__const__));
/* Test for negative number. */
__MATHDECL_1 (int, __signbit,, (_Mdouble_ __value))
__attribute__ ((__const__));
/* Multiply-add function computed as a ternary operation. */
__MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z));
#endif /* Use ISO C 9X. */