mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-10 19:30:10 +00:00
b15cb49505
2000-10-14 Ulrich Drepper <drepper@redhat.com> * math/libm-test.inc (frexp_test): Add L suffix also to parameters. (hypot_test): Likewise. * sysdeps/generic/printf_fphex.c: Compute width of decimal point string correctly. Handle padding correctly. * sysdeps/ia64/fpu/printf_fphex.c: Use sizeof in _itowa parameters correctly. * sysdeps/ieee754/ldbl-128/printf_fphex.c: Likewise. * sysdeps/ieee754/ldbl-96/printf_fphex.c: Likewise. 2000-10-12 Alan Modra <alan@linuxcare.com.au> * FAQ.in: Add --start-group and --end-group. 2000-10-12 Alan Modra <alan@linuxcare.com.au> * malloc/memusage.c: Conditionalize stack usage calculation on stack direction. 2000-10-12 Alan Modra <alan@linuxcare.com.au> * config.h.in: Add ASM_LINE_SEP. * configure.in: Add test for comment and line separators. * include/libc-symbols.h: Define and use ASM_LINE_SEP, and add tabs to placate some hppa assemblers. * sysdeps/hppa/sysdep.h: Likewise. * sysdeps/gnu/siglist.c: Insert \n and \t into inline asm. * sysdeps/unix/sysv/linux/errlist.c: Likewise. 2000-10-12 David Huggins-Daines <dhd@linuxcare.com> * sysdeps/unix/sysv/linux/Makefile: Include <bits/initspin> in $(sysdep_headers). * sysdeps/unix/sysv/linux/bits/initspin.h: Dummy version for non-threaded platforms. 2000-10-12 David Huggins-Daines <dhd@linuxcare.com> * configure.in: Add definitions for hppa. * elf/elf.h: Add PLABEL32 relocation for hppa ELF32, comments for IPLT and EPLT relocations. * shlib-versions: Version symbol definitions for hppa-linux. * sysdeps/unix/sysv/linux/configure.in: Define $arch_minimum_kernel for hppa. 2000-10-12 David Huggins-Daines <dhd@linuxcare.com> * sysdeps/hppa/Makefile: New file. * sysdeps/hppa/Versions: New file. * sysdeps/hppa/setjmp.S: New file. * sysdeps/hppa/__longjmp.S: New file. * sysdeps/hppa/bits/setjmp.h: New file. * sysdeps/hppa/frame.h: New file. * sysdeps/hppa/add_n.s: Don't use %r19 (linkage table pointer). * sysdeps/hppa/sub_n.s: Likewise. * sysdeps/hppa/lshift.s: Likewise. * sysdeps/hppa/rshift.s: Likewise. * sysdeps/hppa/udiv_qrnnd.s: Likewise. * sysdeps/hppa/hppa1.1/addmul_1.s: Likewise. * sysdeps/hppa/hppa1.1/submul_1.s: Likewise. * sysdeps/hppa/hppa1.1/mul_1.s: Likewise. * sysdeps/hppa/hppa1.1/udiv_qrnnd.s: Likewise. * sysdeps/hppa/dl-machine.h: New file. * sysdeps/hppa/dl-fptr.c: New file (note that this is almost identical to the IA-64 one). * sysdeps/hppa/dl-lookupcfg.h: Likewise. * sysdeps/hppa/dl-symaddr.c: Likewise. * sysdeps/hppa/elf/initfini.c: New file. * sysdeps/hppa/elf/start.S: New file. * sysdeps/hppa/fpu/bits/fenv.h: New file. * sysdeps/hppa/fpu/fclrexcpt.c: New file. * sysdeps/hppa/fpu/fedisblxcpt.c: New file. * sysdeps/hppa/fpu/feenablxcpt.c: New file. * sysdeps/hppa/fpu/fegetenv.c: New file. * sysdeps/hppa/fpu/fegetexcept.c: New file. * sysdeps/hppa/fpu/fegetround.c: New file. * sysdeps/hppa/fpu/feholdexcpt.c: New file. * sysdeps/hppa/fpu/fesetenv.c: New file. * sysdeps/hppa/fpu/fesetround.c: New file. * sysdeps/hppa/fpu/feupdateenv.c: New file. * sysdeps/hppa/fpu/fegetexcptflg.c: New file. * sysdeps/hppa/fpu/fraiseexcpt.c: New file. * sysdeps/hppa/fpu/fsetexcptflg.c: New file. * sysdeps/hppa/fpu/ftestexcept.c: New file. * sysdeps/unix/sysv/linux/hppa/Makefile: New file. * sysdeps/unix/sysv/linux/hppa/Versions: New file. * sysdeps/unix/sysv/linux/hppa/syscalls.list: New file. * sysdeps/unix/sysv/linux/hppa/sysdep.c: New file. * sysdeps/unix/sysv/linux/hppa/sysdep.h: New file. * sysdeps/unix/sysv/linux/hppa/bits/fcntl.h: New file. * sysdeps/unix/sysv/linux/hppa/bits/ioctls.h: New file. * sysdeps/unix/sysv/linux/hppa/bits/mman.h: New file. * sysdeps/unix/sysv/linux/hppa/bits/sigaction.h: New file. * sysdeps/unix/sysv/linux/hppa/bits/signum.h: New file. * sysdeps/unix/sysv/linux/hppa/brk.c: New file. * sysdeps/unix/sysv/linux/hppa/clone.S: New file. * sysdeps/unix/sysv/linux/hppa/socket.S: New file. * sysdeps/unix/sysv/linux/hppa/syscall.S: New file. * sysdeps/unix/sysv/linux/hppa/setrlimit.c: New file. * sysdeps/unix/sysv/linux/hppa/getrlimit.c: New file. * sysdeps/unix/sysv/linux/hppa/getrlimit64.c: New file. * sysdeps/unix/sysv/linux/hppa/kernel_sigaction.h: New file. * sysdeps/unix/sysv/linux/hppa/kernel_stat.h: New file. * sysdeps/unix/sysv/linux/hppa/mmap.c: New file. * sysdeps/unix/sysv/linux/hppa/profil-counter.h: New file. * sysdeps/unix/sysv/linux/hppa/procfs.h: New file. * sysdeps/unix/sysv/linux/hppa/ucontext.h: New file. * sysdeps/unix/sysv/linux/hppa/umount.c: New file. 2000-10-12 Alan Modra <alan@linuxcare.com.au> * sysdeps/hppa/hppa1.1/Implies: New file. * sysdeps/hppa/memusage.h: New file.
722 lines
20 KiB
C
722 lines
20 KiB
C
/* Linuxthreads - a simple clone()-based implementation of Posix */
|
|
/* threads for Linux. */
|
|
/* Copyright (C) 1998 Xavier Leroy (Xavier.Leroy@inria.fr) */
|
|
/* */
|
|
/* This program is free software; you can redistribute it and/or */
|
|
/* modify it under the terms of the GNU Library General Public License */
|
|
/* as published by the Free Software Foundation; either version 2 */
|
|
/* of the License, or (at your option) any later version. */
|
|
/* */
|
|
/* This program is distributed in the hope that it will be useful, */
|
|
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
|
|
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
|
|
/* GNU Library General Public License for more details. */
|
|
|
|
/* Internal locks */
|
|
|
|
#include <errno.h>
|
|
#include <sched.h>
|
|
#include <time.h>
|
|
#include <stdlib.h>
|
|
#include <limits.h>
|
|
#include "pthread.h"
|
|
#include "internals.h"
|
|
#include "spinlock.h"
|
|
#include "restart.h"
|
|
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
static void __pthread_acquire(int * spinlock);
|
|
#endif
|
|
|
|
|
|
/* The status field of a spinlock is a pointer whose least significant
|
|
bit is a locked flag.
|
|
|
|
Thus the field values have the following meanings:
|
|
|
|
status == 0: spinlock is free
|
|
status == 1: spinlock is taken; no thread is waiting on it
|
|
|
|
(status & 1) == 1: spinlock is taken and (status & ~1L) is a
|
|
pointer to the first waiting thread; other
|
|
waiting threads are linked via the p_nextlock
|
|
field.
|
|
(status & 1) == 0: same as above, but spinlock is not taken.
|
|
|
|
The waiting list is not sorted by priority order.
|
|
Actually, we always insert at top of list (sole insertion mode
|
|
that can be performed without locking).
|
|
For __pthread_unlock, we perform a linear search in the list
|
|
to find the highest-priority, oldest waiting thread.
|
|
This is safe because there are no concurrent __pthread_unlock
|
|
operations -- only the thread that locked the mutex can unlock it. */
|
|
|
|
|
|
void internal_function __pthread_lock(struct _pthread_fastlock * lock,
|
|
pthread_descr self)
|
|
{
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
long oldstatus, newstatus;
|
|
int successful_seizure, spurious_wakeup_count = 0;
|
|
int spin_count = 0;
|
|
#endif
|
|
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
{
|
|
__pthread_acquire(&lock->__spinlock);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
again:
|
|
|
|
/* On SMP, try spinning to get the lock. */
|
|
|
|
if (__pthread_smp_kernel) {
|
|
int max_count = lock->__spinlock * 2 + 10;
|
|
|
|
for (spin_count = 0; spin_count < max_count; spin_count++) {
|
|
if (((oldstatus = lock->__status) & 1) == 0) {
|
|
if(__compare_and_swap(&lock->__status, oldstatus, oldstatus | 1))
|
|
{
|
|
if (spin_count)
|
|
lock->__spinlock += (spin_count - lock->__spinlock) / 8;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
lock->__spinlock += (spin_count - lock->__spinlock) / 8;
|
|
}
|
|
|
|
/* No luck, try once more or suspend. */
|
|
|
|
do {
|
|
oldstatus = lock->__status;
|
|
successful_seizure = 0;
|
|
|
|
if ((oldstatus & 1) == 0) {
|
|
newstatus = oldstatus | 1;
|
|
successful_seizure = 1;
|
|
} else {
|
|
if (self == NULL)
|
|
self = thread_self();
|
|
newstatus = (long) self | 1;
|
|
}
|
|
|
|
if (self != NULL) {
|
|
THREAD_SETMEM(self, p_nextlock, (pthread_descr) (oldstatus & ~1L));
|
|
/* Make sure the store in p_nextlock completes before performing
|
|
the compare-and-swap */
|
|
MEMORY_BARRIER();
|
|
}
|
|
} while(! __compare_and_swap(&lock->__status, oldstatus, newstatus));
|
|
|
|
/* Suspend with guard against spurious wakeup.
|
|
This can happen in pthread_cond_timedwait_relative, when the thread
|
|
wakes up due to timeout and is still on the condvar queue, and then
|
|
locks the queue to remove itself. At that point it may still be on the
|
|
queue, and may be resumed by a condition signal. */
|
|
|
|
if (!successful_seizure) {
|
|
for (;;) {
|
|
suspend(self);
|
|
if (self->p_nextlock != NULL) {
|
|
/* Count resumes that don't belong to us. */
|
|
spurious_wakeup_count++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
/* Put back any resumes we caught that don't belong to us. */
|
|
while (spurious_wakeup_count--)
|
|
restart(self);
|
|
#endif
|
|
}
|
|
|
|
int __pthread_unlock(struct _pthread_fastlock * lock)
|
|
{
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
long oldstatus;
|
|
pthread_descr thr, * ptr, * maxptr;
|
|
int maxprio;
|
|
#endif
|
|
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
{
|
|
WRITE_MEMORY_BARRIER();
|
|
lock->__spinlock = LT_SPINLOCK_INIT;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
again:
|
|
oldstatus = lock->__status;
|
|
|
|
while ((oldstatus = lock->__status) == 1) {
|
|
if (__compare_and_swap_with_release_semantics(&lock->__status,
|
|
oldstatus, 0))
|
|
return 0;
|
|
}
|
|
|
|
/* Find thread in waiting queue with maximal priority */
|
|
ptr = (pthread_descr *) &lock->__status;
|
|
thr = (pthread_descr) (oldstatus & ~1L);
|
|
maxprio = 0;
|
|
maxptr = ptr;
|
|
while (thr != 0) {
|
|
if (thr->p_priority >= maxprio) {
|
|
maxptr = ptr;
|
|
maxprio = thr->p_priority;
|
|
}
|
|
ptr = &(thr->p_nextlock);
|
|
/* Prevent reordering of the load of lock->__status above and the
|
|
load of *ptr below, as well as reordering of *ptr between
|
|
several iterations of the while loop. Some processors (e.g.
|
|
multiprocessor Alphas) could perform such reordering even though
|
|
the loads are dependent. */
|
|
READ_MEMORY_BARRIER();
|
|
thr = *ptr;
|
|
}
|
|
/* Prevent reordering of the load of lock->__status above and
|
|
thr->p_nextlock below */
|
|
READ_MEMORY_BARRIER();
|
|
/* Remove max prio thread from waiting list. */
|
|
if (maxptr == (pthread_descr *) &lock->__status) {
|
|
/* If max prio thread is at head, remove it with compare-and-swap
|
|
to guard against concurrent lock operation. This removal
|
|
also has the side effect of marking the lock as released
|
|
because the new status comes from thr->p_nextlock whose
|
|
least significant bit is clear. */
|
|
thr = (pthread_descr) (oldstatus & ~1L);
|
|
if (! __compare_and_swap_with_release_semantics
|
|
(&lock->__status, oldstatus, (long)(thr->p_nextlock)))
|
|
goto again;
|
|
} else {
|
|
/* No risk of concurrent access, remove max prio thread normally.
|
|
But in this case we must also flip the least significant bit
|
|
of the status to mark the lock as released. */
|
|
thr = *maxptr;
|
|
*maxptr = thr->p_nextlock;
|
|
|
|
do {
|
|
oldstatus = lock->__status;
|
|
} while (!__compare_and_swap_with_release_semantics(&lock->__status,
|
|
oldstatus, oldstatus & ~1L));
|
|
}
|
|
/* Prevent reordering of store to *maxptr above and store to thr->p_nextlock
|
|
below */
|
|
WRITE_MEMORY_BARRIER();
|
|
/* Wake up the selected waiting thread */
|
|
thr->p_nextlock = NULL;
|
|
restart(thr);
|
|
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Alternate fastlocks do not queue threads directly. Instead, they queue
|
|
* these wait queue node structures. When a timed wait wakes up due to
|
|
* a timeout, it can leave its wait node in the queue (because there
|
|
* is no safe way to remove from the quue). Some other thread will
|
|
* deallocate the abandoned node.
|
|
*/
|
|
|
|
|
|
struct wait_node {
|
|
struct wait_node *next; /* Next node in null terminated linked list */
|
|
pthread_descr thr; /* The thread waiting with this node */
|
|
int abandoned; /* Atomic flag */
|
|
};
|
|
|
|
static long wait_node_free_list;
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
static int wait_node_free_list_spinlock;
|
|
#endif
|
|
|
|
/* Allocate a new node from the head of the free list using an atomic
|
|
operation, or else using malloc if that list is empty. A fundamental
|
|
assumption here is that we can safely access wait_node_free_list->next.
|
|
That's because we never free nodes once we allocate them, so a pointer to a
|
|
node remains valid indefinitely. */
|
|
|
|
static struct wait_node *wait_node_alloc(void)
|
|
{
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
long oldvalue, newvalue;
|
|
#endif
|
|
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
{
|
|
struct wait_node *new_node = 0;
|
|
|
|
__pthread_acquire(&wait_node_free_list_spinlock);
|
|
if (wait_node_free_list != 0) {
|
|
new_node = (struct wait_node *) wait_node_free_list;
|
|
wait_node_free_list = (long) new_node->next;
|
|
}
|
|
WRITE_MEMORY_BARRIER();
|
|
wait_node_free_list_spinlock = 0;
|
|
|
|
if (new_node == 0)
|
|
return malloc(sizeof *wait_node_alloc());
|
|
|
|
return new_node;
|
|
}
|
|
#endif
|
|
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
do {
|
|
oldvalue = wait_node_free_list;
|
|
|
|
if (oldvalue == 0)
|
|
return malloc(sizeof *wait_node_alloc());
|
|
|
|
newvalue = (long) ((struct wait_node *) oldvalue)->next;
|
|
WRITE_MEMORY_BARRIER();
|
|
} while (! __compare_and_swap(&wait_node_free_list, oldvalue, newvalue));
|
|
|
|
return (struct wait_node *) oldvalue;
|
|
#endif
|
|
}
|
|
|
|
/* Return a node to the head of the free list using an atomic
|
|
operation. */
|
|
|
|
static void wait_node_free(struct wait_node *wn)
|
|
{
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
long oldvalue, newvalue;
|
|
#endif
|
|
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
{
|
|
__pthread_acquire(&wait_node_free_list_spinlock);
|
|
wn->next = (struct wait_node *) wait_node_free_list;
|
|
wait_node_free_list = (long) wn;
|
|
WRITE_MEMORY_BARRIER();
|
|
wait_node_free_list_spinlock = 0;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
do {
|
|
oldvalue = wait_node_free_list;
|
|
wn->next = (struct wait_node *) oldvalue;
|
|
newvalue = (long) wn;
|
|
WRITE_MEMORY_BARRIER();
|
|
} while (! __compare_and_swap(&wait_node_free_list, oldvalue, newvalue));
|
|
#endif
|
|
}
|
|
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
|
|
/* Remove a wait node from the specified queue. It is assumed
|
|
that the removal takes place concurrently with only atomic insertions at the
|
|
head of the queue. */
|
|
|
|
static void wait_node_dequeue(struct wait_node **pp_head,
|
|
struct wait_node **pp_node,
|
|
struct wait_node *p_node)
|
|
{
|
|
/* If the node is being deleted from the head of the
|
|
list, it must be deleted using atomic compare-and-swap.
|
|
Otherwise it can be deleted in the straightforward way. */
|
|
|
|
if (pp_node == pp_head) {
|
|
long oldvalue = (long) p_node;
|
|
long newvalue = (long) p_node->next;
|
|
|
|
if (__compare_and_swap((long *) pp_node, oldvalue, newvalue))
|
|
return;
|
|
|
|
/* Oops! Compare and swap failed, which means the node is
|
|
no longer first. We delete it using the ordinary method. But we don't
|
|
know the identity of the node which now holds the pointer to the node
|
|
being deleted, so we must search from the beginning. */
|
|
|
|
for (pp_node = pp_head; *pp_node != p_node; pp_node = &(*pp_node)->next)
|
|
; /* null body */
|
|
}
|
|
|
|
*pp_node = p_node->next;
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
void __pthread_alt_lock(struct _pthread_fastlock * lock,
|
|
pthread_descr self)
|
|
{
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
long oldstatus, newstatus;
|
|
#endif
|
|
struct wait_node wait_node;
|
|
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
{
|
|
int suspend_needed = 0;
|
|
__pthread_acquire(&lock->__spinlock);
|
|
|
|
if (lock->__status == 0)
|
|
lock->__status = 1;
|
|
else {
|
|
if (self == NULL)
|
|
self = thread_self();
|
|
|
|
wait_node.abandoned = 0;
|
|
wait_node.next = (struct wait_node *) lock->__status;
|
|
wait_node.thr = self;
|
|
lock->__status = (long) &wait_node;
|
|
suspend_needed = 1;
|
|
}
|
|
|
|
WRITE_MEMORY_BARRIER();
|
|
lock->__spinlock = LT_SPINLOCK_INIT;
|
|
|
|
if (suspend_needed)
|
|
suspend (self);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
do {
|
|
oldstatus = lock->__status;
|
|
if (oldstatus == 0) {
|
|
newstatus = 1;
|
|
} else {
|
|
if (self == NULL)
|
|
self = thread_self();
|
|
wait_node.thr = self;
|
|
newstatus = (long) &wait_node;
|
|
}
|
|
wait_node.abandoned = 0;
|
|
wait_node.next = (struct wait_node *) oldstatus;
|
|
/* Make sure the store in wait_node.next completes before performing
|
|
the compare-and-swap */
|
|
MEMORY_BARRIER();
|
|
} while(! __compare_and_swap(&lock->__status, oldstatus, newstatus));
|
|
|
|
/* Suspend. Note that unlike in __pthread_lock, we don't worry
|
|
here about spurious wakeup. That's because this lock is not
|
|
used in situations where that can happen; the restart can
|
|
only come from the previous lock owner. */
|
|
|
|
if (oldstatus != 0)
|
|
suspend(self);
|
|
#endif
|
|
}
|
|
|
|
/* Timed-out lock operation; returns 0 to indicate timeout. */
|
|
|
|
int __pthread_alt_timedlock(struct _pthread_fastlock * lock,
|
|
pthread_descr self, const struct timespec *abstime)
|
|
{
|
|
long oldstatus = 0;
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
long newstatus;
|
|
#endif
|
|
struct wait_node *p_wait_node = wait_node_alloc();
|
|
|
|
/* Out of memory, just give up and do ordinary lock. */
|
|
if (p_wait_node == 0) {
|
|
__pthread_alt_lock(lock, self);
|
|
return 1;
|
|
}
|
|
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
{
|
|
__pthread_acquire(&lock->__spinlock);
|
|
|
|
if (lock->__status == 0)
|
|
lock->__status = 1;
|
|
else {
|
|
if (self == NULL)
|
|
self = thread_self();
|
|
|
|
p_wait_node->abandoned = 0;
|
|
p_wait_node->next = (struct wait_node *) lock->__status;
|
|
p_wait_node->thr = self;
|
|
lock->__status = (long) p_wait_node;
|
|
oldstatus = 1; /* force suspend */
|
|
}
|
|
|
|
WRITE_MEMORY_BARRIER();
|
|
lock->__spinlock = LT_SPINLOCK_INIT;
|
|
goto suspend;
|
|
}
|
|
#endif
|
|
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
do {
|
|
oldstatus = lock->__status;
|
|
if (oldstatus == 0) {
|
|
newstatus = 1;
|
|
} else {
|
|
if (self == NULL)
|
|
self = thread_self();
|
|
p_wait_node->thr = self;
|
|
newstatus = (long) p_wait_node;
|
|
}
|
|
p_wait_node->abandoned = 0;
|
|
p_wait_node->next = (struct wait_node *) oldstatus;
|
|
/* Make sure the store in wait_node.next completes before performing
|
|
the compare-and-swap */
|
|
MEMORY_BARRIER();
|
|
} while(! __compare_and_swap(&lock->__status, oldstatus, newstatus));
|
|
#endif
|
|
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
suspend:
|
|
#endif
|
|
|
|
/* If we did not get the lock, do a timed suspend. If we wake up due
|
|
to a timeout, then there is a race; the old lock owner may try
|
|
to remove us from the queue. This race is resolved by us and the owner
|
|
doing an atomic testandset() to change the state of the wait node from 0
|
|
to 1. If we succeed, then it's a timeout and we abandon the node in the
|
|
queue. If we fail, it means the owner gave us the lock. */
|
|
|
|
if (oldstatus != 0) {
|
|
if (timedsuspend(self, abstime) == 0) {
|
|
if (!testandset(&p_wait_node->abandoned))
|
|
return 0; /* Timeout! */
|
|
|
|
/* Eat oustanding resume from owner, otherwise wait_node_free() below
|
|
will race with owner's wait_node_dequeue(). */
|
|
suspend(self);
|
|
}
|
|
}
|
|
|
|
wait_node_free(p_wait_node);
|
|
|
|
return 1; /* Got the lock! */
|
|
}
|
|
|
|
void __pthread_alt_unlock(struct _pthread_fastlock *lock)
|
|
{
|
|
struct wait_node *p_node, **pp_node, *p_max_prio, **pp_max_prio;
|
|
struct wait_node ** const pp_head = (struct wait_node **) &lock->__status;
|
|
int maxprio;
|
|
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
{
|
|
__pthread_acquire(&lock->__spinlock);
|
|
}
|
|
#endif
|
|
|
|
while (1) {
|
|
|
|
/* If no threads are waiting for this lock, try to just
|
|
atomically release it. */
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
{
|
|
if (lock->__status == 0 || lock->__status == 1) {
|
|
lock->__status = 0;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
else
|
|
#endif
|
|
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
{
|
|
long oldstatus = lock->__status;
|
|
if (oldstatus == 0 || oldstatus == 1) {
|
|
if (__compare_and_swap_with_release_semantics (&lock->__status, oldstatus, 0))
|
|
break;
|
|
else
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Process the entire queue of wait nodes. Remove all abandoned
|
|
wait nodes and put them into the global free queue, and
|
|
remember the one unabandoned node which refers to the thread
|
|
having the highest priority. */
|
|
|
|
pp_max_prio = pp_node = pp_head;
|
|
p_max_prio = p_node = *pp_head;
|
|
maxprio = INT_MIN;
|
|
|
|
while (p_node != (struct wait_node *) 1) {
|
|
int prio;
|
|
|
|
if (p_node->abandoned) {
|
|
/* Remove abandoned node. */
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
*pp_node = p_node->next;
|
|
#endif
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
else
|
|
#endif
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
wait_node_dequeue(pp_head, pp_node, p_node);
|
|
#endif
|
|
wait_node_free(p_node);
|
|
READ_MEMORY_BARRIER();
|
|
p_node = *pp_node;
|
|
continue;
|
|
} else if ((prio = p_node->thr->p_priority) >= maxprio) {
|
|
/* Otherwise remember it if its thread has a higher or equal priority
|
|
compared to that of any node seen thus far. */
|
|
maxprio = prio;
|
|
pp_max_prio = pp_node;
|
|
p_max_prio = p_node;
|
|
}
|
|
|
|
pp_node = &p_node->next;
|
|
READ_MEMORY_BARRIER();
|
|
p_node = *pp_node;
|
|
}
|
|
|
|
READ_MEMORY_BARRIER();
|
|
|
|
/* If all threads abandoned, go back to top */
|
|
if (maxprio == INT_MIN)
|
|
continue;
|
|
|
|
ASSERT (p_max_prio != (struct wait_node *) 1);
|
|
|
|
/* Now we want to to remove the max priority thread's wait node from
|
|
the list. Before we can do this, we must atomically try to change the
|
|
node's abandon state from zero to nonzero. If we succeed, that means we
|
|
have the node that we will wake up. If we failed, then it means the
|
|
thread timed out and abandoned the node in which case we repeat the
|
|
whole unlock operation. */
|
|
|
|
if (!testandset(&p_max_prio->abandoned)) {
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
*pp_max_prio = p_max_prio->next;
|
|
#endif
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
else
|
|
#endif
|
|
#if defined HAS_COMPARE_AND_SWAP
|
|
wait_node_dequeue(pp_head, pp_max_prio, p_max_prio);
|
|
#endif
|
|
WRITE_MEMORY_BARRIER();
|
|
restart(p_max_prio->thr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
|
if (!__pthread_has_cas)
|
|
#endif
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
{
|
|
WRITE_MEMORY_BARRIER();
|
|
lock->__spinlock = LT_SPINLOCK_INIT;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Compare-and-swap emulation with a spinlock */
|
|
|
|
#ifdef TEST_FOR_COMPARE_AND_SWAP
|
|
int __pthread_has_cas = 0;
|
|
#endif
|
|
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
|
|
|
int __pthread_compare_and_swap(long * ptr, long oldval, long newval,
|
|
int * spinlock)
|
|
{
|
|
int res;
|
|
if (testandset(spinlock)) __pthread_acquire(spinlock);
|
|
if (*ptr == oldval) {
|
|
*ptr = newval; res = 1;
|
|
} else {
|
|
res = 0;
|
|
}
|
|
/* Prevent reordering of store to *ptr above and store to *spinlock below */
|
|
WRITE_MEMORY_BARRIER();
|
|
*spinlock = 0;
|
|
return res;
|
|
}
|
|
|
|
/* This function is called if the inlined test-and-set
|
|
in __pthread_compare_and_swap() failed */
|
|
|
|
/* The retry strategy is as follows:
|
|
- We test and set the spinlock MAX_SPIN_COUNT times, calling
|
|
sched_yield() each time. This gives ample opportunity for other
|
|
threads with priority >= our priority to make progress and
|
|
release the spinlock.
|
|
- If a thread with priority < our priority owns the spinlock,
|
|
calling sched_yield() repeatedly is useless, since we're preventing
|
|
the owning thread from making progress and releasing the spinlock.
|
|
So, after MAX_SPIN_LOCK attemps, we suspend the calling thread
|
|
using nanosleep(). This again should give time to the owning thread
|
|
for releasing the spinlock.
|
|
Notice that the nanosleep() interval must not be too small,
|
|
since the kernel does busy-waiting for short intervals in a realtime
|
|
process (!). The smallest duration that guarantees thread
|
|
suspension is currently 2ms.
|
|
- When nanosleep() returns, we try again, doing MAX_SPIN_COUNT
|
|
sched_yield(), then sleeping again if needed. */
|
|
|
|
static void __pthread_acquire(int * spinlock)
|
|
{
|
|
int cnt = 0;
|
|
struct timespec tm;
|
|
|
|
while (testandset(spinlock)) {
|
|
if (cnt < MAX_SPIN_COUNT) {
|
|
sched_yield();
|
|
cnt++;
|
|
} else {
|
|
tm.tv_sec = 0;
|
|
tm.tv_nsec = SPIN_SLEEP_DURATION;
|
|
nanosleep(&tm, NULL);
|
|
cnt = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|