mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-26 20:51:11 +00:00
aa1142c593
Continuing the preparation for additional _FloatN / _FloatNx function aliases, this patch makes ia64 libm function implementations use libm_alias_float to define function aliases. The same approach is followed as with the corresponding long double and double patches: the ia64-specific macros are left unchanged, with calls to libm_alias_float_other being added in most cases and libm_alias_float itself being used in only a few places. Tested with build-many-glibcs.py for ia64-linux-gnu that installed stripped shared libraries are unchanged by the patch. * sysdeps/ia64/fpu/libm-symbols.h: Include <libm-alias-float.h>. * sysdeps/ia64/fpu/e_acosf.S (acosf): Use libm_alias_float_other. * sysdeps/ia64/fpu/e_acoshf.S (acoshf): Likewise. * sysdeps/ia64/fpu/e_asinf.S (asinf): Likewise. * sysdeps/ia64/fpu/e_atan2f.S (atan2f): Likewise. * sysdeps/ia64/fpu/e_atanhf.S (atanhf): Likewise. * sysdeps/ia64/fpu/e_coshf.S (coshf): Likewise. * sysdeps/ia64/fpu/e_exp10f.S (exp10f): Likewise. * sysdeps/ia64/fpu/e_exp2f.S (exp2f): Likewise. * sysdeps/ia64/fpu/e_expf.S (expf): Likewise. * sysdeps/ia64/fpu/e_fmodf.S (fmodf): Likewise. * sysdeps/ia64/fpu/e_hypotf.S (hypotf): Likewise. * sysdeps/ia64/fpu/e_lgammaf_r.c (lgammaf_r): Define using libm_alias_float_r. * sysdeps/ia64/fpu/e_log2f.S (log2f): Use libm_alias_float_other. * sysdeps/ia64/fpu/e_logf.S (log10f): Likewise. (logf): Likewise. * sysdeps/ia64/fpu/e_powf.S (powf): Likewise. * sysdeps/ia64/fpu/e_remainderf.S (remainderf): Likewise. * sysdeps/ia64/fpu/e_sinhf.S (sinhf): Likewise. * sysdeps/ia64/fpu/e_sqrtf.S (sqrtf): Likewise. * sysdeps/ia64/fpu/libm_sincosf.S (sincosf): Likewise. * sysdeps/ia64/fpu/s_asinhf.S (asinhf): Likewise. * sysdeps/ia64/fpu/s_atanf.S (atanf): Likewise. * sysdeps/ia64/fpu/s_cbrtf.S (cbrtf): Likewise. * sysdeps/ia64/fpu/s_ceilf.S (ceilf): Likewise. * sysdeps/ia64/fpu/s_copysign.S (copysignf): Define using libm_alias_float. * sysdeps/ia64/fpu/s_cosf.S (sinf): Use libm_alias_float_other. (cosf): Likewise. * sysdeps/ia64/fpu/s_erfcf.S (erfcf): Likewise. * sysdeps/ia64/fpu/s_erff.S (erff): Likewise. * sysdeps/ia64/fpu/s_expm1f.S (expm1f): Likewise. * sysdeps/ia64/fpu/s_fabsf.S (fabsf): Likewise. * sysdeps/ia64/fpu/s_fdimf.S (fdimf): Likewise. * sysdeps/ia64/fpu/s_floorf.S (floorf): Likewise. * sysdeps/ia64/fpu/s_fmaf.S (fmaf): Likewise. * sysdeps/ia64/fpu/s_fmaxf.S (fmaxf): Likewise. * sysdeps/ia64/fpu/s_frexpf.c (frexpf): Likewise. * sysdeps/ia64/fpu/s_ldexpf.c (ldexpf): Likewise. * sysdeps/ia64/fpu/s_log1pf.S (log1pf): Likewise. * sysdeps/ia64/fpu/s_logbf.S (logbf): Likewise. * sysdeps/ia64/fpu/s_modff.S (modff): Likewise. * sysdeps/ia64/fpu/s_nearbyintf.S (nearbyintf): Likewise. * sysdeps/ia64/fpu/s_nextafterf.S (nextafterf): Likewise. * sysdeps/ia64/fpu/s_rintf.S (rintf): Likewise. * sysdeps/ia64/fpu/s_roundf.S (roundf): Likewise. * sysdeps/ia64/fpu/s_scalblnf.c (scalblnf): Likewise. * sysdeps/ia64/fpu/s_scalbnf.c (scalbnf): Define using libm_alias_float. * sysdeps/ia64/fpu/s_tanf.S (tanf): Use libm_alias_float_other. * sysdeps/ia64/fpu/s_tanhf.S (tanhf): Likewise. * sysdeps/ia64/fpu/s_truncf.S (truncf): Likewise. * sysdeps/ia64/fpu/w_lgammaf_main.c [BUILD_LGAMMA && !USE_AS_COMPAT] (lgammaf): Likewise. * sysdeps/ia64/fpu/w_tgammaf_compat.S (tgammaf): Likewise.
746 lines
22 KiB
ArmAsm
746 lines
22 KiB
ArmAsm
.file "libm_sincosf.s"
|
|
|
|
|
|
// Copyright (c) 2002 - 2005, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
// Contributed 2002 by the Intel Numerics Group, Intel Corporation
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
// History
|
|
//==============================================================
|
|
// 02/01/02 Initial version
|
|
// 02/18/02 Large arguments processing routine is excluded.
|
|
// External interface entry points are added
|
|
// 02/26/02 Added temporary return of results in r8, r9
|
|
// 03/13/02 Corrected restore of predicate registers
|
|
// 03/19/02 Added stack unwind around call to __libm_cisf_large
|
|
// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align
|
|
// 02/11/04 cisf is moved to the separate file.
|
|
// 03/31/05 Reformatted delimiters between data tables
|
|
|
|
// API
|
|
//==============================================================
|
|
// 1) void sincosf(float, float*s, float*c)
|
|
// 2) __libm_sincosf - internal LIBM function, that accepts
|
|
// argument in f8 and returns cosine through f8, sine through f9
|
|
|
|
//
|
|
// Overview of operation
|
|
//==============================================================
|
|
//
|
|
// Step 1
|
|
// ======
|
|
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
|
|
// divide x by pi/2^k.
|
|
// Multiply by 2^k/pi.
|
|
// nfloat = Round result to integer (round-to-nearest)
|
|
//
|
|
// r = x - nfloat * pi/2^k
|
|
// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
|
|
// pi/2^k is stored as two numbers that when added make pi/2^k.
|
|
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
|
|
// HIGH part is rounded to zero, LOW - to nearest
|
|
//
|
|
// x = (nfloat * pi/2^k) + r
|
|
// r is small enough that we can use a polynomial approximation
|
|
// and is referred to as the reduced argument.
|
|
//
|
|
// Step 3
|
|
// ======
|
|
// Take the unreduced part and remove the multiples of 2pi.
|
|
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
|
|
//
|
|
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
|
|
// N * 2^(k+1)
|
|
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
|
|
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
|
|
// nfloat * pi/2^k = N2pi + M * pi/2^k
|
|
//
|
|
//
|
|
// Sin(x) = Sin((nfloat * pi/2^k) + r)
|
|
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
|
|
//
|
|
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
|
|
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
|
|
// = Sin(Mpi/2^k)
|
|
//
|
|
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
|
|
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
|
|
// = Cos(Mpi/2^k)
|
|
//
|
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
|
//
|
|
//
|
|
// Step 4
|
|
// ======
|
|
// 0 <= M < 2^(k+1)
|
|
// There are 2^(k+1) Sin entries in a table.
|
|
// There are 2^(k+1) Cos entries in a table.
|
|
//
|
|
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
|
|
//
|
|
//
|
|
// Step 5
|
|
// ======
|
|
// Calculate Cos(r) and Sin(r) by polynomial approximation.
|
|
//
|
|
// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
|
|
// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
|
|
//
|
|
// and the coefficients q1, q2 and p1, p2 are stored in a table
|
|
//
|
|
//
|
|
// Calculate
|
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
|
//
|
|
// as follows
|
|
//
|
|
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
|
|
// rsq = r*r
|
|
//
|
|
//
|
|
// P = p1 + r^2p2
|
|
// Q = q1 + r^2q2
|
|
//
|
|
// rcub = r * rsq
|
|
// Sin(r) = r + rcub * P
|
|
// = r + r^3p1 + r^5p2 = Sin(r)
|
|
//
|
|
// P = r + rcub * P
|
|
//
|
|
// Answer = S[m] Cos(r) + C[m] P
|
|
//
|
|
// Cos(r) = 1 + rsq Q
|
|
// Cos(r) = 1 + r^2 Q
|
|
// Cos(r) = 1 + r^2 (q1 + r^2q2)
|
|
// Cos(r) = 1 + r^2q1 + r^4q2
|
|
//
|
|
// S[m] Cos(r) = S[m](1 + rsq Q)
|
|
// S[m] Cos(r) = S[m] + S[m] rsq Q
|
|
// S[m] Cos(r) = S[m] + s_rsq Q
|
|
// Q = S[m] + s_rsq Q
|
|
//
|
|
// Then,
|
|
//
|
|
// Answer = Q + C[m] P
|
|
|
|
|
|
// Registers used
|
|
//==============================================================
|
|
// general input registers:
|
|
// r14 -> r19
|
|
// r32 -> r49
|
|
|
|
// predicate registers used:
|
|
// p6 -> p14
|
|
|
|
// floating-point registers used
|
|
// f9 -> f15
|
|
// f32 -> f100
|
|
|
|
// Assembly macros
|
|
//==============================================================
|
|
|
|
cisf_Arg = f8
|
|
|
|
cisf_Sin_res = f9
|
|
cisf_Cos_res = f8
|
|
|
|
|
|
cisf_NORM_f8 = f10
|
|
cisf_W = f11
|
|
cisf_int_Nfloat = f12
|
|
cisf_Nfloat = f13
|
|
|
|
cisf_r = f14
|
|
cisf_r_exact = f68
|
|
cisf_rsq = f15
|
|
cisf_rcub = f32
|
|
|
|
cisf_Inv_Pi_by_16 = f33
|
|
cisf_Pi_by_16_hi = f34
|
|
cisf_Pi_by_16_lo = f35
|
|
|
|
cisf_Inv_Pi_by_64 = f36
|
|
cisf_Pi_by_64_hi = f37
|
|
cisf_Pi_by_64_lo = f38
|
|
|
|
|
|
cisf_P1 = f39
|
|
cisf_Q1 = f40
|
|
cisf_P2 = f41
|
|
cisf_Q2 = f42
|
|
cisf_P3 = f43
|
|
cisf_Q3 = f44
|
|
cisf_P4 = f45
|
|
cisf_Q4 = f46
|
|
|
|
cisf_P_temp1 = f47
|
|
cisf_P_temp2 = f48
|
|
|
|
cisf_Q_temp1 = f49
|
|
cisf_Q_temp2 = f50
|
|
|
|
cisf_P = f51
|
|
|
|
cisf_SIG_INV_PI_BY_16_2TO61 = f52
|
|
cisf_RSHF_2TO61 = f53
|
|
cisf_RSHF = f54
|
|
cisf_2TOM61 = f55
|
|
cisf_NFLOAT = f56
|
|
cisf_W_2TO61_RSH = f57
|
|
|
|
cisf_tmp = f58
|
|
|
|
cisf_Sm_sin = f59
|
|
cisf_Cm_sin = f60
|
|
|
|
cisf_Sm_cos = f61
|
|
cisf_Cm_cos = f62
|
|
|
|
cisf_srsq_sin = f63
|
|
cisf_srsq_cos = f64
|
|
|
|
cisf_Q_sin = f65
|
|
cisf_Q_cos = f66
|
|
cisf_Q = f67
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
cisf_pResSin = r33
|
|
cisf_pResCos = r34
|
|
|
|
cisf_exp_limit = r35
|
|
cisf_r_signexp = r36
|
|
cisf_AD_beta_table = r37
|
|
cisf_r_sincos = r38
|
|
|
|
cisf_r_exp = r39
|
|
cisf_r_17_ones = r40
|
|
|
|
cisf_GR_sig_inv_pi_by_16 = r14
|
|
cisf_GR_rshf_2to61 = r15
|
|
cisf_GR_rshf = r16
|
|
cisf_GR_exp_2tom61 = r17
|
|
cisf_GR_n = r18
|
|
|
|
cisf_GR_n_sin = r19
|
|
cisf_GR_m_sin = r41
|
|
cisf_GR_32m_sin = r41
|
|
|
|
cisf_GR_n_cos = r42
|
|
cisf_GR_m_cos = r43
|
|
cisf_GR_32m_cos = r43
|
|
|
|
cisf_AD_2_sin = r44
|
|
cisf_AD_2_cos = r45
|
|
|
|
cisf_gr_tmp = r46
|
|
GR_SAVE_B0 = r47
|
|
GR_SAVE_GP = r48
|
|
rB0_SAVED = r49
|
|
GR_SAVE_PFS = r50
|
|
GR_SAVE_PR = r51
|
|
cisf_AD_1 = r52
|
|
|
|
RODATA
|
|
|
|
.align 16
|
|
// Pi/16 parts
|
|
LOCAL_OBJECT_START(double_cisf_pi)
|
|
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
|
|
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
|
|
LOCAL_OBJECT_END(double_cisf_pi)
|
|
|
|
// Coefficients for polynomials
|
|
LOCAL_OBJECT_START(double_cisf_pq_k4)
|
|
data8 0x3F810FABB668E9A2 // P2
|
|
data8 0x3FA552E3D6DE75C9 // Q2
|
|
data8 0xBFC555554447BC7F // P1
|
|
data8 0xBFDFFFFFC447610A // Q1
|
|
LOCAL_OBJECT_END(double_cisf_pq_k4)
|
|
|
|
// Sincos table (S[m], C[m])
|
|
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
|
|
data8 0x0000000000000000 // sin ( 0 Pi / 16 )
|
|
data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
|
|
//
|
|
data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
|
|
data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
|
|
//
|
|
data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
|
|
data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
|
|
//
|
|
data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
|
|
data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
|
|
//
|
|
data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
|
|
data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
|
|
//
|
|
data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
|
|
data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
|
|
//
|
|
data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
|
|
data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
|
|
//
|
|
data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
|
|
data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
|
|
//
|
|
data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
|
|
data8 0x0000000000000000 // cos ( 8 Pi / 16 )
|
|
//
|
|
data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
|
|
data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
|
|
//
|
|
data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
|
|
data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
|
|
//
|
|
data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
|
|
data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
|
|
//
|
|
data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
|
|
data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
|
|
//
|
|
data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
|
|
data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
|
|
//
|
|
data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
|
|
data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
|
|
//
|
|
data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
|
|
data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
|
|
//
|
|
data8 0x0000000000000000 // sin ( 16 Pi / 16 )
|
|
data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
|
|
//
|
|
data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
|
|
data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
|
|
//
|
|
data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
|
|
data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
|
|
//
|
|
data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
|
|
data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
|
|
//
|
|
data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
|
|
data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
|
|
//
|
|
data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
|
|
data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
|
|
//
|
|
data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
|
|
data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
|
|
//
|
|
data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
|
|
data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
|
|
//
|
|
data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
|
|
data8 0x0000000000000000 // cos ( 24 Pi / 16 )
|
|
//
|
|
data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
|
|
data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
|
|
//
|
|
data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
|
|
data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
|
|
//
|
|
data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
|
|
data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
|
|
//
|
|
data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
|
|
data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
|
|
//
|
|
data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
|
|
data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
|
|
//
|
|
data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
|
|
data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
|
|
//
|
|
data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
|
|
data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
|
|
//
|
|
data8 0x0000000000000000 // sin ( 32 Pi / 16 )
|
|
data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
|
|
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
|
|
|
|
.section .text
|
|
|
|
GLOBAL_IEEE754_ENTRY(sincosf)
|
|
// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
|
|
{ .mlx
|
|
alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0
|
|
movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
|
|
|
|
}
|
|
// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
|
|
{ .mlx
|
|
addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
|
|
movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
|
|
};;
|
|
|
|
{ .mfi
|
|
ld8 cisf_AD_1 = [cisf_AD_1]
|
|
fnorm.s1 cisf_NORM_f8 = cisf_Arg
|
|
cmp.eq p13, p14 = r0, r0 // p13 set for sincos
|
|
}
|
|
// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
|
|
{ .mib
|
|
mov cisf_GR_exp_2tom61 = 0xffff-61
|
|
nop.i 0
|
|
br.cond.sptk _CISF_COMMON
|
|
};;
|
|
GLOBAL_IEEE754_END(sincosf)
|
|
libm_alias_float_other (__sincos, sincos)
|
|
|
|
GLOBAL_LIBM_ENTRY(__libm_sincosf)
|
|
{ .mlx
|
|
// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
|
|
alloc GR_SAVE_PFS = ar.pfs,0,21,0,0
|
|
movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
|
|
}
|
|
// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
|
|
{ .mlx
|
|
addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
|
|
movl cisf_GR_rshf_2to61 = 0x47b8000000000000
|
|
};;
|
|
|
|
// p14 set for __libm_sincos and cis
|
|
{ .mfi
|
|
ld8 cisf_AD_1 = [cisf_AD_1]
|
|
fnorm.s1 cisf_NORM_f8 = cisf_Arg
|
|
cmp.eq p14, p13 = r0, r0
|
|
}
|
|
// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
|
|
{ .mib
|
|
mov cisf_GR_exp_2tom61 = 0xffff-61
|
|
nop.i 0
|
|
nop.b 0
|
|
};;
|
|
|
|
_CISF_COMMON:
|
|
// Form two constants we need
|
|
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
|
|
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
|
|
// fcmp used to set denormal, and invalid on snans
|
|
{ .mfi
|
|
setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
|
|
fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan
|
|
addl cisf_gr_tmp = -1, r0
|
|
}
|
|
// cisf_GR_rshf = 1.1000 2^63 for right shift
|
|
{ .mlx
|
|
setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61
|
|
movl cisf_GR_rshf = 0x43e8000000000000
|
|
};;
|
|
|
|
// Form another constant
|
|
// 2^-61 for scaling Nfloat
|
|
// 0x10017 is register_bias + 24.
|
|
// So if f8 >= 2^24, go to large args routine
|
|
{ .mmi
|
|
getf.exp cisf_r_signexp = cisf_Arg
|
|
setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61
|
|
mov cisf_exp_limit = 0x10017
|
|
};;
|
|
|
|
// Load the two pieces of pi/16
|
|
// Form another constant
|
|
// 1.1000...000 * 2^63, the right shift constant
|
|
{ .mmb
|
|
ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16
|
|
setf.d cisf_RSHF = cisf_GR_rshf
|
|
(p6) br.cond.spnt _CISF_SPECIAL_ARGS
|
|
};;
|
|
|
|
{ .mmi
|
|
ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16
|
|
setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set
|
|
nop.i 0
|
|
};;
|
|
|
|
// Start loading P, Q coefficients
|
|
{ .mmi
|
|
ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16
|
|
nop.m 0
|
|
dep.z cisf_r_exp = cisf_r_signexp, 0, 17
|
|
};;
|
|
|
|
// p10 is true if we must call routines to handle larger arguments
|
|
// p10 is true if f8 exp is >= 0x10017
|
|
{ .mmb
|
|
ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16
|
|
cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit
|
|
(p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path
|
|
};;
|
|
|
|
// cisf_W = x * cisf_Inv_Pi_by_16
|
|
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
|
|
// rightmost bits of significand
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
|
|
nop.i 0
|
|
};;
|
|
|
|
// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
|
|
{ .mfi
|
|
nop.m 0
|
|
fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
|
|
nop.i 0
|
|
};;
|
|
|
|
// N = (int)cisf_int_Nfloat
|
|
{ .mfi
|
|
getf.sig cisf_GR_n = cisf_W_2TO61_RSH
|
|
nop.f 0
|
|
nop.i 0
|
|
};;
|
|
|
|
// Add 2^(k-1) (which is in cisf_r_sincos) to N
|
|
// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
|
|
// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
|
|
{ .mfi
|
|
add cisf_GR_n_cos = 0x8, cisf_GR_n
|
|
fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
|
|
nop.i 0
|
|
};;
|
|
|
|
//Get M (least k+1 bits of N)
|
|
{ .mmi
|
|
and cisf_GR_m_sin = 0x1f,cisf_GR_n
|
|
and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mmi
|
|
shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1
|
|
shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1
|
|
nop.i 0
|
|
};;
|
|
|
|
// den. input to set uflow
|
|
{ .mmf
|
|
ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
|
|
ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
|
|
fclass.m.unc p10,p0 = cisf_Arg,0x0b
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mmf
|
|
nop.m 0
|
|
nop.m 0
|
|
fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
|
|
nop.i 0
|
|
};;
|
|
|
|
// If den. arg, force underflow to be set
|
|
{ .mfi
|
|
nop.m 0
|
|
(p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg
|
|
nop.i 0
|
|
};;
|
|
|
|
//Final sin
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin
|
|
nop.i 0
|
|
}
|
|
//Final cos
|
|
{ .mfb
|
|
nop.m 0
|
|
fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos
|
|
(p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path
|
|
};;
|
|
|
|
{ .mmb
|
|
stfs [cisf_pResSin] = cisf_Sin_res
|
|
stfs [cisf_pResCos] = cisf_Cos_res
|
|
br.ret.sptk b0 // common exit for sincos main path
|
|
};;
|
|
|
|
_CISF_SPECIAL_ARGS:
|
|
// sinf(+/-0) = +/-0
|
|
// sinf(Inf) = NaN
|
|
// sinf(NaN) = NaN
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
|
|
nop.i 999
|
|
};;
|
|
|
|
// cosf(+/-0) = 1.0
|
|
// cosf(Inf) = NaN
|
|
// cosf(NaN) = NaN
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
|
|
(p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path
|
|
};;
|
|
|
|
{ .mmb
|
|
stfs [cisf_pResSin] = cisf_Sin_res
|
|
stfs [cisf_pResCos] = cisf_Cos_res
|
|
br.ret.sptk b0 // special exit for sincos main path
|
|
};;
|
|
|
|
// exit for sincos
|
|
// NOTE! r8 and r9 used only because of compiler issue
|
|
// connected with float point complex function arguments pass
|
|
// After fix of this issue this operations can be deleted
|
|
_CISF_RETURN:
|
|
{ .mmb
|
|
getf.s r8 = cisf_Cos_res
|
|
getf.s r9 = cisf_Sin_res
|
|
br.ret.sptk b0 // exit for sincos
|
|
};;
|
|
GLOBAL_LIBM_END(__libm_sincosf)
|
|
|
|
//// |x| > 2^24 path ///////
|
|
.proc _CISF_LARGE_ARGS
|
|
_CISF_LARGE_ARGS:
|
|
.prologue
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
.save ar.pfs, GR_SAVE_PFS
|
|
mov GR_SAVE_PFS = ar.pfs
|
|
};;
|
|
|
|
{ .mfi
|
|
mov GR_SAVE_GP = gp
|
|
nop.f 0
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0 = b0
|
|
};;
|
|
|
|
.body
|
|
// Call of huge arguments sincos
|
|
{ .mib
|
|
nop.m 0
|
|
mov GR_SAVE_PR = pr
|
|
br.call.sptk b0 = __libm_sincos_large
|
|
};;
|
|
|
|
{ .mfi
|
|
mov gp = GR_SAVE_GP
|
|
nop.f 0
|
|
mov pr = GR_SAVE_PR, 0x1fffe
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
mov b0 = GR_SAVE_B0
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0
|
|
mov ar.pfs = GR_SAVE_PFS
|
|
}
|
|
// exit for |x| > 2^24 path (__libm_sincos and cis)
|
|
{ .mfb
|
|
nop.m 0
|
|
fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0
|
|
(p14) br.cond.sptk _CISF_RETURN
|
|
};;
|
|
|
|
{ .mmb
|
|
stfs [cisf_pResSin] = cisf_Sin_res
|
|
stfs [cisf_pResCos] = cisf_Cos_res
|
|
br.ret.sptk b0 // exit for sincos |x| > 2^24 path
|
|
};;
|
|
|
|
.endp _CISF_LARGE_ARGS
|
|
|
|
.type __libm_sincos_large#,@function
|
|
.global __libm_sincos_large#
|