mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-16 21:54:16 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
2009 lines
49 KiB
ArmAsm
2009 lines
49 KiB
ArmAsm
.file "atanl.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2005, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// History
|
|
// 02/02/00 (hand-optimized)
|
|
// 04/04/00 Unwind support added
|
|
// 08/15/00 Bundle added after call to __libm_error_support to properly
|
|
// set [the previously overwritten] GR_Parameter_RESULT.
|
|
// 03/13/01 Fixed flags when denormal raised on intermediate result
|
|
// 01/08/02 Improved speed.
|
|
// 02/06/02 Corrected .section statement
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align;
|
|
// used data8 for long double table values
|
|
// 03/31/05 Reformatted delimiters between data tables
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Function: atanl(x) = inverse tangent(x), for double extended x values
|
|
// Function: atan2l(y,x) = atan(y/x), for double extended y, x values
|
|
//
|
|
// API
|
|
//
|
|
// long double atanl (long double x)
|
|
// long double atan2l (long double y, long double x)
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers: f8 (Input and Return Value)
|
|
// f9 (Input for atan2l)
|
|
// f10-f15, f32-f83
|
|
//
|
|
// General Purpose Registers:
|
|
// r32-r51
|
|
// r49-r52 (Arguments to error support for 0,0 case)
|
|
//
|
|
// Predicate Registers: p6-p15
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// IEEE Special Conditions:
|
|
//
|
|
// Denormal fault raised on denormal inputs
|
|
// Underflow exceptions may occur
|
|
// Special error handling for the y=0 and x=0 case
|
|
// Inexact raised when appropriate by algorithm
|
|
//
|
|
// atanl(SNaN) = QNaN
|
|
// atanl(QNaN) = QNaN
|
|
// atanl(+/-0) = +/- 0
|
|
// atanl(+/-Inf) = +/-pi/2
|
|
//
|
|
// atan2l(Any NaN for x or y) = QNaN
|
|
// atan2l(+/-0,x) = +/-0 for x > 0
|
|
// atan2l(+/-0,x) = +/-pi for x < 0
|
|
// atan2l(+/-0,+0) = +/-0
|
|
// atan2l(+/-0,-0) = +/-pi
|
|
// atan2l(y,+/-0) = pi/2 y > 0
|
|
// atan2l(y,+/-0) = -pi/2 y < 0
|
|
// atan2l(+/-y, Inf) = +/-0 for finite y > 0
|
|
// atan2l(+/-Inf, x) = +/-pi/2 for finite x
|
|
// atan2l(+/-y, -Inf) = +/-pi for finite y > 0
|
|
// atan2l(+/-Inf, Inf) = +/-pi/4
|
|
// atan2l(+/-Inf, -Inf) = +/-3pi/4
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Mathematical Description
|
|
// ---------------------------
|
|
//
|
|
// The function ATANL( Arg_Y, Arg_X ) returns the "argument"
|
|
// or the "phase" of the complex number
|
|
//
|
|
// Arg_X + i Arg_Y
|
|
//
|
|
// or equivalently, the angle in radians from the positive
|
|
// x-axis to the line joining the origin and the point
|
|
// (Arg_X,Arg_Y)
|
|
//
|
|
//
|
|
// (Arg_X, Arg_Y) x
|
|
// \
|
|
// \
|
|
// \
|
|
// \
|
|
// \ angle between is ATANL(Arg_Y,Arg_X)
|
|
|
|
|
|
|
|
|
|
// \
|
|
// ------------------> X-axis
|
|
|
|
// Origin
|
|
//
|
|
// Moreover, this angle is reported in the range [-pi,pi] thus
|
|
//
|
|
// -pi <= ATANL( Arg_Y, Arg_X ) <= pi.
|
|
//
|
|
// From the geometry, it is easy to define ATANL when one of
|
|
// Arg_X or Arg_Y is +-0 or +-inf:
|
|
//
|
|
//
|
|
// \ Y |
|
|
// X \ | +0 | -0 | +inf | -inf | finite non-zero
|
|
// \ | | | | |
|
|
// ______________________________________________________
|
|
// | | | |
|
|
// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2
|
|
// | qNaN | | |
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi
|
|
// --------------------------------------------------------
|
|
// finite | X>0? | pi/2 | -pi/2 | normal case
|
|
// non-zero| sign(Y)*0: | | |
|
|
// | sign(Y)*pi | | |
|
|
//
|
|
//
|
|
// One must take note that ATANL is NOT the arctangent of the
|
|
// value Arg_Y/Arg_X; but rather ATANL and arctan are related
|
|
// in a slightly more complicated way as follows:
|
|
//
|
|
// Let U := max(|Arg_X|, |Arg_Y|); V := min(|Arg_X|, |Arg_Y|);
|
|
// sign_X be the sign bit of Arg_X, i.e., sign_X is 0 or 1;
|
|
// s_X be the sign of Arg_X, i.e., s_X = (-1)^sign_X;
|
|
//
|
|
// sign_Y be the sign bit of Arg_Y, i.e., sign_Y is 0 or 1;
|
|
// s_Y be the sign of Arg_Y, i.e., s_Y = (-1)^sign_Y;
|
|
//
|
|
// swap be 0 if |Arg_X| >= |Arg_Y| and 1 otherwise.
|
|
//
|
|
// Then, ATANL(Arg_Y, Arg_X) =
|
|
//
|
|
// / arctan(V/U) \ sign_X = 0 & swap = 0
|
|
// | pi/2 - arctan(V/U) | sign_X = 0 & swap = 1
|
|
// s_Y * | |
|
|
// | pi - arctan(V/U) | sign_X = 1 & swap = 0
|
|
// \ pi/2 + arctan(V/U) / sign_X = 1 & swap = 1
|
|
//
|
|
//
|
|
// This relationship also suggest that the algorithm's major
|
|
// task is to calculate arctan(V/U) for 0 < V <= U; and the
|
|
// final Result is given by
|
|
//
|
|
// s_Y * { (P_hi + P_lo) + sigma * arctan(V/U) }
|
|
//
|
|
// where
|
|
//
|
|
// (P_hi,P_lo) represents M(sign_X,swap)*(pi/2) accurately
|
|
//
|
|
// M(sign_X,swap) = 0 for sign_X = 0 and swap = 0
|
|
// 1 for swap = 1
|
|
// 2 for sign_X = 1 and swap = 0
|
|
//
|
|
// and
|
|
//
|
|
// sigma = { (sign_X XOR swap) : -1.0 : 1.0 }
|
|
//
|
|
// = (-1) ^ ( sign_X XOR swap )
|
|
//
|
|
// Both (P_hi,P_lo) and sigma can be stored in a table and fetched
|
|
// using (sign_X,swap) as an index. (P_hi, P_lo) can be stored as a
|
|
// double-precision, and single-precision pair; and sigma can
|
|
// obviously be just a single-precision number.
|
|
//
|
|
// In the algorithm we propose, arctan(V/U) is calculated to high accuracy
|
|
// as A_hi + A_lo. Consequently, the Result ATANL( Arg_Y, Arg_X ) is
|
|
// given by
|
|
//
|
|
// s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
|
|
//
|
|
// We now discuss the calculation of arctan(V/U) for 0 < V <= U.
|
|
//
|
|
// For (V/U) < 2^(-3), we use a simple polynomial of the form
|
|
//
|
|
// z + z^3*(P_1 + z^2*(P_2 + z^2*(P_3 + ... + P_8)))
|
|
//
|
|
// where z = V/U.
|
|
//
|
|
// For the sake of accuracy, the first term "z" must approximate V/U to
|
|
// extra precision. For z^3 and higher power, a working precision
|
|
// approximation to V/U suffices. Thus, we obtain:
|
|
//
|
|
// z_hi + z_lo = V/U to extra precision and
|
|
// z = V/U to working precision
|
|
//
|
|
// The value arctan(V/U) is delivered as two pieces (A_hi, A_lo)
|
|
//
|
|
// (A_hi,A_lo) = (z_hi, z^3*(P_1 + ... + P_8) + z_lo).
|
|
//
|
|
//
|
|
// For 2^(-3) <= (V/U) <= 1, we use a table-driven approach.
|
|
// Consider
|
|
//
|
|
// (V/U) = 2^k * 1.b_1 b_2 .... b_63 b_64 b_65 ....
|
|
//
|
|
// Define
|
|
//
|
|
// z_hi = 2^k * 1.b_1 b_2 b_3 b_4 1
|
|
//
|
|
// then
|
|
// / \
|
|
// | (V/U) - z_hi |
|
|
|
|
// arctan(V/U) = arctan(z_hi) + acrtan| -------------- |
|
|
// | 1 + (V/U)*z_hi |
|
|
// \ /
|
|
//
|
|
// / \
|
|
// | V - z_hi*U |
|
|
|
|
// = arctan(z_hi) + acrtan| -------------- |
|
|
// | U + V*z_hi |
|
|
// \ /
|
|
//
|
|
// = arctan(z_hi) + acrtan( V' / U' )
|
|
//
|
|
//
|
|
// where
|
|
//
|
|
// V' = V - U*z_hi; U' = U + V*z_hi.
|
|
//
|
|
// Let
|
|
//
|
|
// w_hi + w_lo = V'/U' to extra precision and
|
|
// w = V'/U' to working precision
|
|
//
|
|
// then we can approximate arctan(V'/U') by
|
|
//
|
|
// arctan(V'/U') = w_hi + w_lo
|
|
// + w^3*(Q_1 + w^2*(Q_2 + w^2*(Q_3 + w^2*Q_4)))
|
|
//
|
|
// = w_hi + w_lo + poly
|
|
//
|
|
// Finally, arctan(z_hi) is calculated beforehand and stored in a table
|
|
// as Tbl_hi, Tbl_lo. Thus,
|
|
//
|
|
// (A_hi, A_lo) = (Tbl_hi, w_hi+(poly+(w_lo+Tbl_lo)))
|
|
//
|
|
// This completes the mathematical description.
|
|
//
|
|
//
|
|
// Algorithm
|
|
// -------------
|
|
//
|
|
// Step 0. Check for unsupported format.
|
|
//
|
|
// If
|
|
// ( expo(Arg_X) not zero AND msb(Arg_X) = 0 ) OR
|
|
// ( expo(Arg_Y) not zero AND msb(Arg_Y) = 0 )
|
|
//
|
|
// then one of the arguments is unsupported. Generate an
|
|
// invalid and return qNaN.
|
|
//
|
|
// Step 1. Initialize
|
|
//
|
|
// Normalize Arg_X and Arg_Y and set the following
|
|
//
|
|
// sign_X := sign_bit(Arg_X)
|
|
// s_Y := (sign_bit(Arg_Y)==0? 1.0 : -1.0)
|
|
// swap := (|Arg_X| >= |Arg_Y|? 0 : 1 )
|
|
// U := max( |Arg_X|, |Arg_Y| )
|
|
// V := min( |Arg_X|, |Arg_Y| )
|
|
//
|
|
// execute: frcpa E, pred, V, U
|
|
// If pred is 0, go to Step 5 for special cases handling.
|
|
//
|
|
// Step 2. Decide on branch.
|
|
//
|
|
// Q := E * V
|
|
// If Q < 2^(-3) go to Step 4 for simple polynomial case.
|
|
//
|
|
// Step 3. Table-driven algorithm.
|
|
//
|
|
// Q is represented as
|
|
//
|
|
// 2^(-k) * 1.b_1 b_2 b_3 ... b_63; k = 0,-1,-2,-3
|
|
//
|
|
// and that if k = 0, b_1 = b_2 = b_3 = b_4 = 0.
|
|
//
|
|
// Define
|
|
//
|
|
// z_hi := 2^(-k) * 1.b_1 b_2 b_3 b_4 1
|
|
//
|
|
// (note that there are 49 possible values of z_hi).
|
|
//
|
|
// ...We now calculate V' and U'. While V' is representable
|
|
// ...as a 64-bit number because of cancellation, U' is
|
|
// ...not in general a 64-bit number. Obtaining U' accurately
|
|
// ...requires two working precision numbers
|
|
//
|
|
// U_prime_hi := U + V * z_hi ...WP approx. to U'
|
|
// U_prime_lo := ( U - U_prime_hi ) + V*z_hi ...observe order
|
|
// V_prime := V - U * z_hi ...this is exact
|
|
//
|
|
// C_hi := frcpa (1.0, U_prime_hi) ...C_hi approx 1/U'_hi
|
|
//
|
|
// loop 3 times
|
|
// C_hi := C_hi + C_hi*(1.0 - C_hi*U_prime_hi)
|
|
//
|
|
// ...at this point C_hi is (1/U_prime_hi) to roughly 64 bits
|
|
//
|
|
// w_hi := V_prime * C_hi ...w_hi is V_prime/U_prime to
|
|
// ...roughly working precision
|
|
//
|
|
// ...note that we want w_hi + w_lo to approximate
|
|
// ...V_prime/(U_prime_hi + U_prime_lo) to extra precision
|
|
// ...but for now, w_hi is good enough for the polynomial
|
|
// ...calculation.
|
|
//
|
|
// wsq := w_hi*w_hi
|
|
// poly := w_hi*wsq*(Q_1 + wsq*(Q_2 + wsq*(Q_3 + wsq*Q_4)))
|
|
//
|
|
// Fetch
|
|
// (Tbl_hi, Tbl_lo) = atan(z_hi) indexed by (k,b_1,b_2,b_3,b_4)
|
|
// ...Tbl_hi is a double-precision number
|
|
// ...Tbl_lo is a single-precision number
|
|
//
|
|
// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
|
|
// ...as discussed previous. Again; the implementation can
|
|
// ...chose to fetch P_hi and P_lo from a table indexed by
|
|
// ...(sign_X, swap).
|
|
// ...P_hi is a double-precision number;
|
|
// ...P_lo is a single-precision number.
|
|
//
|
|
// ...calculate w_lo so that w_hi + w_lo is V'/U' accurately
|
|
// w_lo := ((V_prime - w_hi*U_prime_hi) -
|
|
// w_hi*U_prime_lo) * C_hi ...observe order
|
|
//
|
|
//
|
|
// ...Ready to deliver arctan(V'/U') as A_hi, A_lo
|
|
// A_hi := Tbl_hi
|
|
// A_lo := w_hi + (poly + (Tbl_lo + w_lo)) ...observe order
|
|
//
|
|
// ...Deliver final Result
|
|
// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
|
|
//
|
|
// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
|
|
// ...sigma can be obtained by a table lookup using
|
|
// ...(sign_X,swap) as index and stored as single precision
|
|
// ...sigma should be calculated earlier
|
|
//
|
|
// P_hi := s_Y*P_hi
|
|
// A_hi := s_Y*A_hi
|
|
//
|
|
// Res_hi := P_hi + sigma*A_hi ...this is exact because
|
|
// ...both P_hi and Tbl_hi
|
|
// ...are double-precision
|
|
// ...and |Tbl_hi| > 2^(-4)
|
|
// ...P_hi is either 0 or
|
|
// ...between (1,4)
|
|
//
|
|
// Res_lo := sigma*A_lo + P_lo
|
|
//
|
|
// Return Res_hi + s_Y*Res_lo in user-defined rounding control
|
|
//
|
|
// Step 4. Simple polynomial case.
|
|
//
|
|
// ...E and Q are inherited from Step 2.
|
|
//
|
|
// A_hi := Q ...Q is inherited from Step 2 Q approx V/U
|
|
//
|
|
// loop 3 times
|
|
// E := E + E2(1.0 - E*U1
|
|
// ...at this point E approximates 1/U to roughly working precision
|
|
//
|
|
// z := V * E ...z approximates V/U to roughly working precision
|
|
// zsq := z * z
|
|
// z4 := zsq * zsq; z8 := z4 * z4
|
|
//
|
|
// poly1 := P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
|
|
// poly2 := zsq*(P_1 + zsq*(P_2 + zsq*P_3))
|
|
//
|
|
// poly := poly1 + z8*poly2
|
|
//
|
|
// z_lo := (V - A_hi*U)*E
|
|
//
|
|
// A_lo := z*poly + z_lo
|
|
// ...A_hi, A_lo approximate arctan(V/U) accurately
|
|
//
|
|
// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
|
|
// ...one can store the M(sign_X,swap) as single precision
|
|
// ...values
|
|
//
|
|
// ...Deliver final Result
|
|
// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
|
|
//
|
|
// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
|
|
// ...sigma can be obtained by a table lookup using
|
|
// ...(sign_X,swap) as index and stored as single precision
|
|
// ...sigma should be calculated earlier
|
|
//
|
|
// P_hi := s_Y*P_hi
|
|
// A_hi := s_Y*A_hi
|
|
//
|
|
// Res_hi := P_hi + sigma*A_hi ...need to compute
|
|
// ...P_hi + sigma*A_hi
|
|
// ...exactly
|
|
//
|
|
// tmp := (P_hi - Res_hi) + sigma*A_hi
|
|
//
|
|
// Res_lo := s_Y*(sigma*A_lo + P_lo) + tmp
|
|
//
|
|
// Return Res_hi + Res_lo in user-defined rounding control
|
|
//
|
|
// Step 5. Special Cases
|
|
//
|
|
// These are detected early in the function by fclass instructions.
|
|
//
|
|
// We are in one of those special cases when X or Y is 0,+-inf or NaN
|
|
//
|
|
// If one of X and Y is NaN, return X+Y (which will generate
|
|
// invalid in case one is a signaling NaN). Otherwise,
|
|
// return the Result as described in the table
|
|
//
|
|
//
|
|
//
|
|
// \ Y |
|
|
// X \ | +0 | -0 | +inf | -inf | finite non-zero
|
|
// \ | | | | |
|
|
// ______________________________________________________
|
|
// | | | |
|
|
// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2
|
|
// | qNaN | | |
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi
|
|
// --------------------------------------------------------
|
|
// finite | X>0? | pi/2 | -pi/2 |
|
|
// non-zero| sign(Y)*0: | | | N/A
|
|
// | sign(Y)*pi | | |
|
|
//
|
|
//
|
|
|
|
ArgY_orig = f8
|
|
Result = f8
|
|
FR_RESULT = f8
|
|
ArgX_orig = f9
|
|
ArgX = f10
|
|
FR_X = f10
|
|
ArgY = f11
|
|
FR_Y = f11
|
|
s_Y = f12
|
|
U = f13
|
|
V = f14
|
|
E = f15
|
|
Q = f32
|
|
z_hi = f33
|
|
U_prime_hi = f34
|
|
U_prime_lo = f35
|
|
V_prime = f36
|
|
C_hi = f37
|
|
w_hi = f38
|
|
w_lo = f39
|
|
wsq = f40
|
|
poly = f41
|
|
Tbl_hi = f42
|
|
Tbl_lo = f43
|
|
P_hi = f44
|
|
P_lo = f45
|
|
A_hi = f46
|
|
A_lo = f47
|
|
sigma = f48
|
|
Res_hi = f49
|
|
Res_lo = f50
|
|
Z = f52
|
|
zsq = f53
|
|
z4 = f54
|
|
z8 = f54
|
|
poly1 = f55
|
|
poly2 = f56
|
|
z_lo = f57
|
|
tmp = f58
|
|
P_1 = f59
|
|
Q_1 = f60
|
|
P_2 = f61
|
|
Q_2 = f62
|
|
P_3 = f63
|
|
Q_3 = f64
|
|
P_4 = f65
|
|
Q_4 = f66
|
|
P_5 = f67
|
|
P_6 = f68
|
|
P_7 = f69
|
|
P_8 = f70
|
|
U_hold = f71
|
|
TWO_TO_NEG3 = f72
|
|
C_hi_hold = f73
|
|
E_hold = f74
|
|
M = f75
|
|
ArgX_abs = f76
|
|
ArgY_abs = f77
|
|
Result_lo = f78
|
|
A_temp = f79
|
|
FR_temp = f80
|
|
Xsq = f81
|
|
Ysq = f82
|
|
tmp_small = f83
|
|
|
|
GR_SAVE_PFS = r33
|
|
GR_SAVE_B0 = r34
|
|
GR_SAVE_GP = r35
|
|
sign_X = r36
|
|
sign_Y = r37
|
|
swap = r38
|
|
table_ptr1 = r39
|
|
table_ptr2 = r40
|
|
k = r41
|
|
lookup = r42
|
|
exp_ArgX = r43
|
|
exp_ArgY = r44
|
|
exponent_Q = r45
|
|
significand_Q = r46
|
|
special = r47
|
|
sp_exp_Q = r48
|
|
sp_exp_4sig_Q = r49
|
|
table_base = r50
|
|
int_temp = r51
|
|
|
|
GR_Parameter_X = r49
|
|
GR_Parameter_Y = r50
|
|
GR_Parameter_RESULT = r51
|
|
GR_Parameter_TAG = r52
|
|
GR_temp = r52
|
|
|
|
RODATA
|
|
.align 16
|
|
|
|
LOCAL_OBJECT_START(Constants_atan)
|
|
// double pi/2
|
|
data8 0x3FF921FB54442D18
|
|
// single lo_pi/2, two**(-3)
|
|
data4 0x248D3132, 0x3E000000
|
|
data8 0xAAAAAAAAAAAAAAA3, 0xBFFD // P_1
|
|
data8 0xCCCCCCCCCCCC54B2, 0x3FFC // P_2
|
|
data8 0x9249249247E4D0C2, 0xBFFC // P_3
|
|
data8 0xE38E38E058870889, 0x3FFB // P_4
|
|
data8 0xBA2E895B290149F8, 0xBFFB // P_5
|
|
data8 0x9D88E6D4250F733D, 0x3FFB // P_6
|
|
data8 0x884E51FFFB8745A0, 0xBFFB // P_7
|
|
data8 0xE1C7412B394396BD, 0x3FFA // P_8
|
|
data8 0xAAAAAAAAAAAAA52F, 0xBFFD // Q_1
|
|
data8 0xCCCCCCCCC75B60D3, 0x3FFC // Q_2
|
|
data8 0x924923AD011F1940, 0xBFFC // Q_3
|
|
data8 0xE36F716D2A5F89BD, 0x3FFB // Q_4
|
|
//
|
|
// Entries Tbl_hi (double precision)
|
|
// B = 1+Index/16+1/32 Index = 0
|
|
// Entries Tbl_lo (single precision)
|
|
// B = 1+Index/16+1/32 Index = 0
|
|
//
|
|
data8 0x3FE9A000A935BD8E
|
|
data4 0x23ACA08F, 0x00000000
|
|
//
|
|
// Entries Tbl_hi (double precision) Index = 0,1,...,15
|
|
// B = 2^(-1)*(1+Index/16+1/32)
|
|
// Entries Tbl_lo (single precision)
|
|
// Index = 0,1,...,15 B = 2^(-1)*(1+Index/16+1/32)
|
|
//
|
|
data8 0x3FDE77EB7F175A34
|
|
data4 0x238729EE, 0x00000000
|
|
data8 0x3FE0039C73C1A40B
|
|
data4 0x249334DB, 0x00000000
|
|
data8 0x3FE0C6145B5B43DA
|
|
data4 0x22CBA7D1, 0x00000000
|
|
data8 0x3FE1835A88BE7C13
|
|
data4 0x246310E7, 0x00000000
|
|
data8 0x3FE23B71E2CC9E6A
|
|
data4 0x236210E5, 0x00000000
|
|
data8 0x3FE2EE628406CBCA
|
|
data4 0x2462EAF5, 0x00000000
|
|
data8 0x3FE39C391CD41719
|
|
data4 0x24B73EF3, 0x00000000
|
|
data8 0x3FE445065B795B55
|
|
data4 0x24C11260, 0x00000000
|
|
data8 0x3FE4E8DE5BB6EC04
|
|
data4 0x242519EE, 0x00000000
|
|
data8 0x3FE587D81F732FBA
|
|
data4 0x24D4346C, 0x00000000
|
|
data8 0x3FE6220D115D7B8D
|
|
data4 0x24ED487B, 0x00000000
|
|
data8 0x3FE6B798920B3D98
|
|
data4 0x2495FF1E, 0x00000000
|
|
data8 0x3FE748978FBA8E0F
|
|
data4 0x223D9531, 0x00000000
|
|
data8 0x3FE7D528289FA093
|
|
data4 0x242B0411, 0x00000000
|
|
data8 0x3FE85D69576CC2C5
|
|
data4 0x2335B374, 0x00000000
|
|
data8 0x3FE8E17AA99CC05D
|
|
data4 0x24C27CFB, 0x00000000
|
|
//
|
|
// Entries Tbl_hi (double precision) Index = 0,1,...,15
|
|
// B = 2^(-2)*(1+Index/16+1/32)
|
|
// Entries Tbl_lo (single precision)
|
|
// Index = 0,1,...,15 B = 2^(-2)*(1+Index/16+1/32)
|
|
//
|
|
data8 0x3FD025FA510665B5
|
|
data4 0x24263482, 0x00000000
|
|
data8 0x3FD1151A362431C9
|
|
data4 0x242C8DC9, 0x00000000
|
|
data8 0x3FD2025567E47C95
|
|
data4 0x245CF9BA, 0x00000000
|
|
data8 0x3FD2ED987A823CFE
|
|
data4 0x235C892C, 0x00000000
|
|
data8 0x3FD3D6D129271134
|
|
data4 0x2389BE52, 0x00000000
|
|
data8 0x3FD4BDEE586890E6
|
|
data4 0x24436471, 0x00000000
|
|
data8 0x3FD5A2E0175E0F4E
|
|
data4 0x2389DBD4, 0x00000000
|
|
data8 0x3FD685979F5FA6FD
|
|
data4 0x2476D43F, 0x00000000
|
|
data8 0x3FD7660752817501
|
|
data4 0x24711774, 0x00000000
|
|
data8 0x3FD84422B8DF95D7
|
|
data4 0x23EBB501, 0x00000000
|
|
data8 0x3FD91FDE7CD0C662
|
|
data4 0x23883A0C, 0x00000000
|
|
data8 0x3FD9F93066168001
|
|
data4 0x240DF63F, 0x00000000
|
|
data8 0x3FDAD00F5422058B
|
|
data4 0x23FE261A, 0x00000000
|
|
data8 0x3FDBA473378624A5
|
|
data4 0x23A8CD0E, 0x00000000
|
|
data8 0x3FDC76550AAD71F8
|
|
data4 0x2422D1D0, 0x00000000
|
|
data8 0x3FDD45AEC9EC862B
|
|
data4 0x2344A109, 0x00000000
|
|
//
|
|
// Entries Tbl_hi (double precision) Index = 0,1,...,15
|
|
// B = 2^(-3)*(1+Index/16+1/32)
|
|
// Entries Tbl_lo (single precision)
|
|
// Index = 0,1,...,15 B = 2^(-3)*(1+Index/16+1/32)
|
|
//
|
|
data8 0x3FC068D584212B3D
|
|
data4 0x239874B6, 0x00000000
|
|
data8 0x3FC1646541060850
|
|
data4 0x2335E774, 0x00000000
|
|
data8 0x3FC25F6E171A535C
|
|
data4 0x233E36BE, 0x00000000
|
|
data8 0x3FC359E8EDEB99A3
|
|
data4 0x239680A3, 0x00000000
|
|
data8 0x3FC453CEC6092A9E
|
|
data4 0x230FB29E, 0x00000000
|
|
data8 0x3FC54D18BA11570A
|
|
data4 0x230C1418, 0x00000000
|
|
data8 0x3FC645BFFFB3AA73
|
|
data4 0x23F0564A, 0x00000000
|
|
data8 0x3FC73DBDE8A7D201
|
|
data4 0x23D4A5E1, 0x00000000
|
|
data8 0x3FC8350BE398EBC7
|
|
data4 0x23D4ADDA, 0x00000000
|
|
data8 0x3FC92BA37D050271
|
|
data4 0x23BCB085, 0x00000000
|
|
data8 0x3FCA217E601081A5
|
|
data4 0x23BC841D, 0x00000000
|
|
data8 0x3FCB1696574D780B
|
|
data4 0x23CF4A8E, 0x00000000
|
|
data8 0x3FCC0AE54D768466
|
|
data4 0x23BECC90, 0x00000000
|
|
data8 0x3FCCFE654E1D5395
|
|
data4 0x2323DCD2, 0x00000000
|
|
data8 0x3FCDF110864C9D9D
|
|
data4 0x23F53F3A, 0x00000000
|
|
data8 0x3FCEE2E1451D980C
|
|
data4 0x23CCB11F, 0x00000000
|
|
//
|
|
data8 0x400921FB54442D18, 0x3CA1A62633145C07 // PI two doubles
|
|
data8 0x3FF921FB54442D18, 0x3C91A62633145C07 // PI_by_2 two dbles
|
|
data8 0x3FE921FB54442D18, 0x3C81A62633145C07 // PI_by_4 two dbles
|
|
data8 0x4002D97C7F3321D2, 0x3C9A79394C9E8A0A // 3PI_by_4 two dbles
|
|
LOCAL_OBJECT_END(Constants_atan)
|
|
|
|
|
|
.section .text
|
|
GLOBAL_IEEE754_ENTRY(atanl)
|
|
|
|
// Use common code with atan2l after setting x=1.0
|
|
{ .mfi
|
|
alloc r32 = ar.pfs, 0, 17, 4, 0
|
|
fma.s1 Ysq = ArgY_orig, ArgY_orig, f0 // Form y*y
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
addl table_ptr1 = @ltoff(Constants_atan#), gp // Address of table pointer
|
|
fma.s1 Xsq = f1, f1, f0 // Form x*x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 table_ptr1 = [table_ptr1] // Get table pointer
|
|
fnorm.s1 ArgY = ArgY_orig
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnorm.s1 ArgX = f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.exp sign_X = f1 // Get signexp of x
|
|
fmerge.s ArgX_abs = f0, f1 // Form |x|
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnorm.s1 ArgX_orig = f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.exp sign_Y = ArgY_orig // Get signexp of y
|
|
fmerge.s ArgY_abs = f0, ArgY_orig // Form |y|
|
|
mov table_base = table_ptr1 // Save base pointer to tables
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfd P_hi = [table_ptr1],8 // Load double precision hi part of pi
|
|
fclass.m p8,p0 = ArgY_orig, 0x1e7 // Test y natval, nan, inf, zero
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 M = f1, f1, f0 // Set M = 1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Check for everything - if false, then must be pseudo-zero
|
|
// or pseudo-nan (IA unsupporteds).
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
fclass.m p0,p12 = f1, 0x1FF // Test x unsupported
|
|
(p8) br.cond.spnt ATANL_Y_SPECIAL // Branch if y natval, nan, inf, zero
|
|
}
|
|
;;
|
|
|
|
// U = max(ArgX_abs,ArgY_abs)
|
|
// V = min(ArgX_abs,ArgY_abs)
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.ge.s1 p6,p7 = Xsq, Ysq // Test for |x| >= |y| using squares
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s1 V = ArgX_abs, f1, f0 // Set V assuming |x| < |y|
|
|
br.cond.sptk ATANL_COMMON // Branch to common code
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(atanl)
|
|
libm_alias_ldouble_other (__atan, atan)
|
|
|
|
GLOBAL_IEEE754_ENTRY(atan2l)
|
|
|
|
{ .mfi
|
|
alloc r32 = ar.pfs, 0, 17, 4, 0
|
|
fma.s1 Ysq = ArgY_orig, ArgY_orig, f0 // Form y*y
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
addl table_ptr1 = @ltoff(Constants_atan#), gp // Address of table pointer
|
|
fma.s1 Xsq = ArgX_orig, ArgX_orig, f0 // Form x*x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 table_ptr1 = [table_ptr1] // Get table pointer
|
|
fnorm.s1 ArgY = ArgY_orig
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnorm.s1 ArgX = ArgX_orig
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.exp sign_X = ArgX_orig // Get signexp of x
|
|
fmerge.s ArgX_abs = f0, ArgX_orig // Form |x|
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.exp sign_Y = ArgY_orig // Get signexp of y
|
|
fmerge.s ArgY_abs = f0, ArgY_orig // Form |y|
|
|
mov table_base = table_ptr1 // Save base pointer to tables
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfd P_hi = [table_ptr1],8 // Load double precision hi part of pi
|
|
fclass.m p8,p0 = ArgY_orig, 0x1e7 // Test y natval, nan, inf, zero
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
|
|
fclass.m p9,p0 = ArgX_orig, 0x1e7 // Test x natval, nan, inf, zero
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 M = f1, f1, f0 // Set M = 1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Check for everything - if false, then must be pseudo-zero
|
|
// or pseudo-nan (IA unsupporteds).
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
fclass.m p0,p12 = ArgX_orig, 0x1FF // Test x unsupported
|
|
(p8) br.cond.spnt ATANL_Y_SPECIAL // Branch if y natval, nan, inf, zero
|
|
}
|
|
;;
|
|
|
|
// U = max(ArgX_abs,ArgY_abs)
|
|
// V = min(ArgX_abs,ArgY_abs)
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.ge.s1 p6,p7 = Xsq, Ysq // Test for |x| >= |y| using squares
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s1 V = ArgX_abs, f1, f0 // Set V assuming |x| < |y|
|
|
(p9) br.cond.spnt ATANL_X_SPECIAL // Branch if x natval, nan, inf, zero
|
|
}
|
|
;;
|
|
|
|
// Now common code for atanl and atan2l
|
|
ATANL_COMMON:
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p0,p13 = ArgY_orig, 0x1FF // Test y unsupported
|
|
shr sign_X = sign_X, 17 // Get sign bit of x
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 U = ArgY_abs, f1, f0 // Set U assuming |x| < |y|
|
|
adds table_ptr1 = 176, table_ptr1 // Point to Q4
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p6) add swap = r0, r0 // Set swap=0 if |x| >= |y|
|
|
(p6) frcpa.s1 E, p0 = ArgY_abs, ArgX_abs // Compute E if |x| >= |y|
|
|
shr sign_Y = sign_Y, 17 // Get sign bit of y
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p6) fma.s1 V = ArgY_abs, f1, f0 // Set V if |x| >= |y|
|
|
(p12) br.cond.spnt ATANL_UNSUPPORTED // Branch if x unsupported
|
|
}
|
|
;;
|
|
|
|
// Set p8 if y >=0
|
|
// Set p9 if y < 0
|
|
// Set p10 if |x| >= |y| and x >=0
|
|
// Set p11 if |x| >= |y| and x < 0
|
|
{ .mfi
|
|
cmp.eq p8, p9 = 0, sign_Y // Test for y >= 0
|
|
(p7) frcpa.s1 E, p0 = ArgX_abs, ArgY_abs // Compute E if |x| < |y|
|
|
(p7) add swap = 1, r0 // Set swap=1 if |x| < |y|
|
|
}
|
|
{ .mfb
|
|
(p6) cmp.eq.unc p10, p11 = 0, sign_X // If |x| >= |y|, test for x >= 0
|
|
(p6) fma.s1 U = ArgX_abs, f1, f0 // Set U if |x| >= |y|
|
|
(p13) br.cond.spnt ATANL_UNSUPPORTED // Branch if y unsupported
|
|
}
|
|
;;
|
|
|
|
//
|
|
// if p8, s_Y = 1.0
|
|
// if p9, s_Y = -1.0
|
|
//
|
|
.pred.rel "mutex",p8,p9
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fadd.s1 s_Y = f0, f1 // If y >= 0 set s_Y = 1.0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 s_Y = f0, f1 // If y < 0 set s_Y = -1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p10,p11
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fsub.s1 M = M, f1 // If |x| >= |y| and x >=0, set M=0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 M = M, f1 // If |x| >= |y| and x < 0, set M=2.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig // Dummy to set denormal flag
|
|
nop.i 999
|
|
}
|
|
// *************************************************
|
|
// ********************* STEP2 *********************
|
|
// *************************************************
|
|
//
|
|
// Q = E * V
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 Q = E, V
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (1) if POLY path
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Create a single precision representation of the signexp of Q with the
|
|
// 4 most significant bits of the significand followed by a 1 and then 18 0's
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 P_hi = M, P_hi
|
|
dep.z special = 0x1, 18, 1 // Form 0x0000000000040000
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 P_lo = M, P_lo
|
|
add table_ptr2 = 32, table_ptr1
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 A_temp = Q, f1, f0 // Set A_temp if POLY path
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 E = E, E_hold, E // E = E + E*E_hold (1) if POLY path
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Is Q < 2**(-3)?
|
|
// swap = xor(swap,sign_X)
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.lt.s1 p9, p0 = Q, TWO_TO_NEG3 // Test Q < 2^-3
|
|
xor swap = sign_X, swap
|
|
}
|
|
;;
|
|
|
|
// P_hi = s_Y * P_hi
|
|
{ .mmf
|
|
getf.exp exponent_Q = Q // Get signexp of Q
|
|
cmp.eq.unc p7, p6 = 0x00000, swap
|
|
fmpy.s1 P_hi = s_Y, P_hi
|
|
}
|
|
;;
|
|
|
|
//
|
|
// if (PR_1) sigma = -1.0
|
|
// if (PR_2) sigma = 1.0
|
|
//
|
|
{ .mfi
|
|
getf.sig significand_Q = Q // Get significand of Q
|
|
(p6) fsub.s1 sigma = f0, f1
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
(p9) add table_ptr1 = 128, table_base // Point to P8 if POLY path
|
|
(p7) fadd.s1 sigma = f0, f1
|
|
(p9) br.cond.spnt ATANL_POLY // Branch to POLY if 0 < Q < 2^-3
|
|
}
|
|
;;
|
|
|
|
//
|
|
// *************************************************
|
|
// ******************** STEP3 **********************
|
|
// *************************************************
|
|
//
|
|
// lookup = b_1 b_2 b_3 B_4
|
|
//
|
|
{ .mmi
|
|
nop.m 999
|
|
nop.m 999
|
|
andcm k = 0x0003, exponent_Q // k=0,1,2,3 for exp_Q=0,-1,-2,-3
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Generate sign_exp_Q b_1 b_2 b_3 b_4 1 0 0 0 ... 0 in single precision
|
|
// representation. Note sign of Q is always 0.
|
|
//
|
|
{ .mfi
|
|
cmp.eq p8, p9 = 0x0000, k // Test k=0
|
|
nop.f 999
|
|
extr.u lookup = significand_Q, 59, 4 // Extract b_1 b_2 b_3 b_4 for index
|
|
}
|
|
{ .mfi
|
|
sub sp_exp_Q = 0x7f, k // Form single prec biased exp of Q
|
|
nop.f 999
|
|
sub k = k, r0, 1 // Decrement k
|
|
}
|
|
;;
|
|
|
|
// Form pointer to B index table
|
|
{ .mfi
|
|
ldfe Q_4 = [table_ptr1], -16 // Load Q_4
|
|
nop.f 999
|
|
(p9) shl k = k, 8 // k = 0, 256, or 512
|
|
}
|
|
{ .mfi
|
|
(p9) shladd table_ptr2 = lookup, 4, table_ptr2
|
|
nop.f 999
|
|
shladd sp_exp_4sig_Q = sp_exp_Q, 4, lookup // Shift and add in 4 high bits
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p8) add table_ptr2 = -16, table_ptr2 // Pointer if original k was 0
|
|
(p9) add table_ptr2 = k, table_ptr2 // Pointer if k was 1, 2, 3
|
|
dep special = sp_exp_4sig_Q, special, 19, 13 // Form z_hi as single prec
|
|
}
|
|
;;
|
|
|
|
// z_hi = s exp 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
|
|
{ .mmi
|
|
ldfd Tbl_hi = [table_ptr2], 8 // Load Tbl_hi from index table
|
|
;;
|
|
setf.s z_hi = special // Form z_hi
|
|
nop.i 999
|
|
}
|
|
{ .mmi
|
|
ldfs Tbl_lo = [table_ptr2], 8 // Load Tbl_lo from index table
|
|
;;
|
|
ldfe Q_3 = [table_ptr1], -16 // Load Q_3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe Q_2 = [table_ptr1], -16 // Load Q_2
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
ldfe Q_1 = [table_ptr1], -16 // Load Q_1
|
|
nop.m 999
|
|
nop.f 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 U_prime_hi = V, z_hi, U // U_prime_hi = U + V * z_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 V_prime = U, z_hi, V // V_prime = V - U * z_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
mov A_hi = Tbl_hi // Start with A_hi = Tbl_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 U_hold = U, U_prime_hi // U_hold = U - U_prime_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
frcpa.s1 C_hi, p0 = f1, U_prime_hi // C_hi = frcpa(1,U_prime_hi)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 A_hi = s_Y, A_hi // A_hi = s_Y * A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 U_prime_lo = z_hi, V, U_hold // U_prime_lo = U_hold + V * z_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// C_hi_hold = 1 - C_hi * U_prime_hi (1)
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 Res_hi = sigma, A_hi, P_hi // Res_hi = P_hi + sigma * A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (1)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// C_hi_hold = 1 - C_hi * U_prime_hi (2)
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (2)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// C_hi_hold = 1 - C_hi * U_prime_hi (3)
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (3)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 w_hi = V_prime, C_hi // w_hi = V_prime * C_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 wsq = w_hi, w_hi // wsq = w_hi * w_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 w_lo = w_hi, U_prime_hi, V_prime // w_lo = V_prime-w_hi*U_prime_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly = wsq, Q_4, Q_3 // poly = Q_3 + wsq * Q_4
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 w_lo = w_hi, U_prime_lo, w_lo // w_lo = w_lo - w_hi * U_prime_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly = wsq, poly, Q_2 // poly = Q_2 + wsq * poly
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 w_lo = C_hi, w_lo // w_lo = = w_lo * C_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly = wsq, poly, Q_1 // poly = Q_1 + wsq * poly
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_lo = Tbl_lo, w_lo // A_lo = Tbl_lo + w_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s0 Q_1 = Q_1, Q_1 // Dummy operation to raise inexact
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 poly = wsq, poly // poly = wsq * poly
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 poly = w_hi, poly // poly = w_hi * poly
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_lo = A_lo, poly // A_lo = A_lo + poly
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_lo = A_lo, w_hi // A_lo = A_lo + w_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 Res_lo = sigma, A_lo, P_lo // Res_lo = P_lo + sigma * A_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Result = Res_hi + Res_lo * s_Y (User Supplied Rounding Mode)
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s0 Result = Res_lo, s_Y, Res_hi
|
|
br.ret.sptk b0 // Exit table path 2^-3 <= V/U < 1
|
|
}
|
|
;;
|
|
|
|
|
|
ATANL_POLY:
|
|
// Here if 0 < V/U < 2^-3
|
|
//
|
|
// ***********************************************
|
|
// ******************** STEP4 ********************
|
|
// ***********************************************
|
|
|
|
//
|
|
// Following:
|
|
// Iterate 3 times E = E + E*(1.0 - E*U)
|
|
// Also load P_8, P_7, P_6, P_5, P_4
|
|
//
|
|
{ .mfi
|
|
ldfe P_8 = [table_ptr1], -16 // Load P_8
|
|
fnma.s1 z_lo = A_temp, U, V // z_lo = V - A_temp * U
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (2)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe P_7 = [table_ptr1], -16 // Load P_7
|
|
;;
|
|
ldfe P_6 = [table_ptr1], -16 // Load P_6
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe P_5 = [table_ptr1], -16 // Load P_5
|
|
fma.s1 E = E, E_hold, E // E = E + E_hold*E (2)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe P_4 = [table_ptr1], -16 // Load P_4
|
|
;;
|
|
ldfe P_3 = [table_ptr1], -16 // Load P_3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe P_2 = [table_ptr1], -16 // Load P_2
|
|
fnma.s1 E_hold = E, U, f1 // E_hold = 1.0 - E*U (3)
|
|
nop.i 999
|
|
}
|
|
{ .mlx
|
|
nop.m 999
|
|
movl int_temp = 0x24005 // Signexp for small neg number
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
ldfe P_1 = [table_ptr1], -16 // Load P_1
|
|
setf.exp tmp_small = int_temp // Form small neg number
|
|
fma.s1 E = E, E_hold, E // E = E + E_hold*E (3)
|
|
}
|
|
;;
|
|
|
|
//
|
|
//
|
|
// At this point E approximates 1/U to roughly working precision
|
|
// Z = V*E approximates V/U
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 Z = V, E // Z = V * E
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 z_lo = z_lo, E // z_lo = z_lo * E
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Now what we want to do is
|
|
// poly1 = P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
|
|
// poly2 = zsq*(P_1 + zsq*(P_2 + zsq*P_3))
|
|
//
|
|
//
|
|
// Fixup added to force inexact later -
|
|
// A_hi = A_temp + z_lo
|
|
// z_lo = (A_temp - A_hi) + z_lo
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 zsq = Z, Z // zsq = Z * Z
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_hi = A_temp, z_lo // A_hi = A_temp + z_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly1 = zsq, P_8, P_7 // poly1 = P_7 + zsq * P_8
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly2 = zsq, P_3, P_2 // poly2 = P_2 + zsq * P_3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 z4 = zsq, zsq // z4 = zsq * zsq
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 A_temp = A_temp, A_hi // A_temp = A_temp - A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.s tmp = A_hi, A_hi // Copy tmp = A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly1 = zsq, poly1, P_6 // poly1 = P_6 + zsq * poly1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly2 = zsq, poly2, P_1 // poly2 = P_2 + zsq * poly2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 z8 = z4, z4 // z8 = z4 * z4
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 z_lo = A_temp, z_lo // z_lo = (A_temp - A_hi) + z_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly1 = zsq, poly1, P_5 // poly1 = P_5 + zsq * poly1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 poly2 = poly2, zsq // poly2 = zsq * poly2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Create small GR double in case need to raise underflow
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 poly1 = zsq, poly1, P_4 // poly1 = P_4 + zsq * poly1
|
|
dep GR_temp = -1,r0,0,53
|
|
}
|
|
;;
|
|
|
|
// Create small double in case need to raise underflow
|
|
{ .mfi
|
|
setf.d FR_temp = GR_temp
|
|
fma.s1 poly = z8, poly1, poly2 // poly = poly2 + z8 * poly1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 A_lo = Z, poly, z_lo // A_lo = z_lo + Z * poly
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_hi = tmp, A_lo // A_hi = tmp + A_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 tmp = tmp, A_hi // tmp = tmp - A_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 A_hi = s_Y, A_hi // A_hi = s_Y * A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 A_lo = tmp, A_lo // A_lo = tmp + A_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 Res_hi = sigma, A_hi, P_hi // Res_hi = P_hi + sigma * A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 tmp = P_hi, Res_hi // tmp = P_hi - Res_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Test if A_lo is zero
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p6,p0 = A_lo, 0x007 // Test A_lo = 0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) mov A_lo = tmp_small // If A_lo zero, make very small
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 tmp = A_hi, sigma, tmp // tmp = sigma * A_hi + tmp
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sigma = A_lo, sigma, P_lo // sigma = A_lo * sigma + P_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 Res_lo = s_Y, sigma, tmp // Res_lo = s_Y * sigma + tmp
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Test if Res_lo is denormal
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p14, p15 = Res_lo, 0x0b
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Compute Result = Res_lo + Res_hi. Use s3 if Res_lo is denormal.
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fadd.s3 Result = Res_lo, Res_hi // Result for Res_lo denormal
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fadd.s0 Result = Res_lo, Res_hi // Result for Res_lo normal
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// If Res_lo is denormal test if Result equals zero
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fclass.m.unc p14, p0 = Result, 0x07
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// If Res_lo is denormal and Result equals zero, raise inexact, underflow
|
|
// by squaring small double
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
(p14) fmpy.d.s0 FR_temp = FR_temp, FR_temp
|
|
br.ret.sptk b0 // Exit POLY path, 0 < Q < 2^-3
|
|
}
|
|
;;
|
|
|
|
|
|
ATANL_UNSUPPORTED:
|
|
{ .mfb
|
|
nop.m 999
|
|
fmpy.s0 Result = ArgX,ArgY
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
// Here if y natval, nan, inf, zero
|
|
ATANL_Y_SPECIAL:
|
|
// Here if x natval, nan, inf, zero
|
|
ATANL_X_SPECIAL:
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p13,p12 = ArgY_orig, 0x0c3 // Test y nan
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p15,p14 = ArgY_orig, 0x103 // Test y natval
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fclass.m p13,p0 = ArgX_orig, 0x0c3 // Test x nan
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fclass.m p15,p0 = ArgX_orig, 0x103 // Test x natval
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p13) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result nan if x or y nan
|
|
(p13) br.ret.spnt b0 // Exit if x or y nan
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p15) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result natval if x or y natval
|
|
(p15) br.ret.spnt b0 // Exit if x or y natval
|
|
}
|
|
;;
|
|
|
|
|
|
// Here if x or y inf or zero
|
|
ATANL_SPECIAL_HANDLING:
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p6, p7 = ArgY_orig, 0x007 // Test y zero
|
|
mov special = 992 // Offset to table
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
add table_ptr1 = table_base, special // Point to 3pi/4
|
|
fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig // Dummy to set denormal flag
|
|
(p7) br.cond.spnt ATANL_ArgY_Not_ZERO // Branch if y not zero
|
|
}
|
|
;;
|
|
|
|
// Here if y zero
|
|
{ .mmf
|
|
ldfd Result = [table_ptr1], 8 // Get pi high
|
|
nop.m 999
|
|
fclass.m p14, p0 = ArgX, 0x035 // Test for x>=+0
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
nop.m 999
|
|
ldfd Result_lo = [table_ptr1], -8 // Get pi lo
|
|
fclass.m p15, p0 = ArgX, 0x036 // Test for x<=-0
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Return sign_Y * 0 when ArgX > +0
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fmerge.s Result = ArgY, f0 // If x>=+0, y=0, hi sgn(y)*0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p13, p0 = ArgX, 0x007 // Test for x=0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fmerge.s Result_lo = ArgY, f0 // If x>=+0, y=0, lo sgn(y)*0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p13) mov GR_Parameter_TAG = 36 // Error tag for x=0, y=0
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Return sign_Y * pi when ArgX < -0
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fmerge.s Result = ArgY, Result // If x<0, y=0, hi=sgn(y)*pi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fmerge.s Result_lo = ArgY, Result_lo // If x<0, y=0, lo=sgn(y)*pi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
//
|
|
// Call error support function for atan(0,0)
|
|
//
|
|
{ .mfb
|
|
nop.m 999
|
|
fadd.s0 Result = Result, Result_lo
|
|
(p13) br.cond.spnt __libm_error_region // Branch if atan(0,0)
|
|
}
|
|
;;
|
|
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
br.ret.sptk b0 // Exit for y=0, x not 0
|
|
}
|
|
;;
|
|
|
|
// Here if y not zero
|
|
ATANL_ArgY_Not_ZERO:
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p0, p10 = ArgY, 0x023 // Test y inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
fclass.m p6, p0 = ArgX, 0x017 // Test for 0 <= |x| < inf
|
|
(p10) br.cond.spnt ATANL_ArgY_Not_INF // Branch if 0 < |y| < inf
|
|
}
|
|
;;
|
|
|
|
// Here if y=inf
|
|
//
|
|
// Return +PI/2 when ArgY = +Inf and ArgX = +/-0 or normal
|
|
// Return -PI/2 when ArgY = -Inf and ArgX = +/-0 or normal
|
|
// Return +PI/4 when ArgY = +Inf and ArgX = +Inf
|
|
// Return -PI/4 when ArgY = -Inf and ArgX = +Inf
|
|
// Return +3PI/4 when ArgY = +Inf and ArgX = -Inf
|
|
// Return -3PI/4 when ArgY = -Inf and ArgX = -Inf
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p7, p0 = ArgX, 0x021 // Test for x=+inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p6) add table_ptr1 = 16, table_ptr1 // Point to pi/2, if x finite
|
|
fclass.m p8, p0 = ArgX, 0x022 // Test for x=-inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p7) add table_ptr1 = 32, table_ptr1 // Point to pi/4 if x=+inf
|
|
;;
|
|
(p8) add table_ptr1 = 48, table_ptr1 // Point to 3pi/4 if x=-inf
|
|
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfd Result = [table_ptr1], 8 // Load pi/2, pi/4, or 3pi/4 hi
|
|
;;
|
|
ldfd Result_lo = [table_ptr1], -8 // Load pi/2, pi/4, or 3pi/4 lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.s Result = ArgY, Result // Merge sgn(y) in hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.s Result_lo = ArgY, Result_lo // Merge sgn(y) in lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
fadd.s0 Result = Result, Result_lo // Compute complete result
|
|
br.ret.sptk b0 // Exit for y=inf
|
|
}
|
|
;;
|
|
|
|
// Here if y not INF, and x=0 or INF
|
|
ATANL_ArgY_Not_INF:
|
|
//
|
|
// Return +PI/2 when ArgY NOT Inf, ArgY > 0 and ArgX = +/-0
|
|
// Return -PI/2 when ArgY NOT Inf, ArgY < 0 and ArgX = +/-0
|
|
// Return +0 when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
|
|
// Return -0 when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
|
|
// Return +PI when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
|
|
// Return -PI when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
|
|
//
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p7, p9 = ArgX, 0x021 // Test for x=+inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p6, p0 = ArgX, 0x007 // Test for x=0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p6) add table_ptr1 = 16, table_ptr1 // Point to pi/2
|
|
fclass.m p8, p0 = ArgX, 0x022 // Test for x=-inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p7,p9
|
|
{ .mfi
|
|
(p9) ldfd Result = [table_ptr1], 8 // Load pi or pi/2 hi
|
|
(p7) fmerge.s Result = ArgY, f0 // If y not inf, x=+inf, sgn(y)*0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p9) ldfd Result_lo = [table_ptr1], -8 // Load pi or pi/2 lo
|
|
(p7) fnorm.s0 Result = Result // If y not inf, x=+inf normalize
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fmerge.s Result = ArgY, Result // Merge sgn(y) in hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fmerge.s Result_lo = ArgY, Result_lo // Merge sgn(y) in lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p9) fadd.s0 Result = Result, Result_lo // Compute complete result
|
|
br.ret.spnt b0 // Exit for y not inf, x=0,inf
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(atan2l)
|
|
libm_alias_ldouble_other (__atan2, atan2)
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
.prologue
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
{ .mmi
|
|
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
.body
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y
|
|
nop.b 0 // Parameter 3 address
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
nop.m 0
|
|
nop.m 0
|
|
add GR_Parameter_RESULT = 48,sp
|
|
};;
|
|
{ .mmi
|
|
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
|
|
LOCAL_LIBM_END(__libm_error_region#)
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|