mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 23:10:06 +00:00
89f3b6e18c
If you remove the "override CFLAGS += -Wno-uninitialized" in math/Makefile, one of the errors you get is: ../sysdeps/ieee754/dbl-64/mpa.c: In function '__mp_dbl.part.0': ../sysdeps/ieee754/dbl-64/mpa.c:183:5: error: 'c' may be used uninitialized in this function [-Werror=maybe-uninitialized] c *= X[0]; The problem is that the p < 5 case initializes c if p is 1, 2, 3 or 4 but not otherwise, and in fact p is positive for all calls to this function so the uninitialized case can't actually occur. This patch replaces the "if (p == 4)" last case with a comment so the compiler can see that all paths do initialize c. Tested for x86_64. * sysdeps/ieee754/dbl-64/mpa.c (norm): Remove if condition on (p == 4) case.
907 lines
19 KiB
C
907 lines
19 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2015 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/************************************************************************/
|
|
/* MODULE_NAME: mpa.c */
|
|
/* */
|
|
/* FUNCTIONS: */
|
|
/* mcr */
|
|
/* acr */
|
|
/* cpy */
|
|
/* norm */
|
|
/* denorm */
|
|
/* mp_dbl */
|
|
/* dbl_mp */
|
|
/* add_magnitudes */
|
|
/* sub_magnitudes */
|
|
/* add */
|
|
/* sub */
|
|
/* mul */
|
|
/* inv */
|
|
/* dvd */
|
|
/* */
|
|
/* Arithmetic functions for multiple precision numbers. */
|
|
/* Relative errors are bounded */
|
|
/************************************************************************/
|
|
|
|
|
|
#include "endian.h"
|
|
#include "mpa.h"
|
|
#include <sys/param.h>
|
|
#include <alloca.h>
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
#ifndef NO__CONST
|
|
const mp_no __mpone = { 1, { 1.0, 1.0 } };
|
|
const mp_no __mptwo = { 1, { 1.0, 2.0 } };
|
|
#endif
|
|
|
|
#ifndef NO___ACR
|
|
/* Compare mantissa of two multiple precision numbers regardless of the sign
|
|
and exponent of the numbers. */
|
|
static int
|
|
mcr (const mp_no *x, const mp_no *y, int p)
|
|
{
|
|
long i;
|
|
long p2 = p;
|
|
for (i = 1; i <= p2; i++)
|
|
{
|
|
if (X[i] == Y[i])
|
|
continue;
|
|
else if (X[i] > Y[i])
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Compare the absolute values of two multiple precision numbers. */
|
|
int
|
|
__acr (const mp_no *x, const mp_no *y, int p)
|
|
{
|
|
long i;
|
|
|
|
if (X[0] == 0)
|
|
{
|
|
if (Y[0] == 0)
|
|
i = 0;
|
|
else
|
|
i = -1;
|
|
}
|
|
else if (Y[0] == 0)
|
|
i = 1;
|
|
else
|
|
{
|
|
if (EX > EY)
|
|
i = 1;
|
|
else if (EX < EY)
|
|
i = -1;
|
|
else
|
|
i = mcr (x, y, p);
|
|
}
|
|
|
|
return i;
|
|
}
|
|
#endif
|
|
|
|
#ifndef NO___CPY
|
|
/* Copy multiple precision number X into Y. They could be the same
|
|
number. */
|
|
void
|
|
__cpy (const mp_no *x, mp_no *y, int p)
|
|
{
|
|
long i;
|
|
|
|
EY = EX;
|
|
for (i = 0; i <= p; i++)
|
|
Y[i] = X[i];
|
|
}
|
|
#endif
|
|
|
|
#ifndef NO___MP_DBL
|
|
/* Convert a multiple precision number *X into a double precision
|
|
number *Y, normalized case (|x| >= 2**(-1022))). X has precision
|
|
P, which is positive. */
|
|
static void
|
|
norm (const mp_no *x, double *y, int p)
|
|
{
|
|
# define R RADIXI
|
|
long i;
|
|
double c;
|
|
mantissa_t a, u, v, z[5];
|
|
if (p < 5)
|
|
{
|
|
if (p == 1)
|
|
c = X[1];
|
|
else if (p == 2)
|
|
c = X[1] + R * X[2];
|
|
else if (p == 3)
|
|
c = X[1] + R * (X[2] + R * X[3]);
|
|
else /* p == 4. */
|
|
c = (X[1] + R * X[2]) + R * R * (X[3] + R * X[4]);
|
|
}
|
|
else
|
|
{
|
|
for (a = 1, z[1] = X[1]; z[1] < TWO23; )
|
|
{
|
|
a *= 2;
|
|
z[1] *= 2;
|
|
}
|
|
|
|
for (i = 2; i < 5; i++)
|
|
{
|
|
mantissa_store_t d, r;
|
|
d = X[i] * (mantissa_store_t) a;
|
|
DIV_RADIX (d, r);
|
|
z[i] = r;
|
|
z[i - 1] += d;
|
|
}
|
|
|
|
u = ALIGN_DOWN_TO (z[3], TWO19);
|
|
v = z[3] - u;
|
|
|
|
if (v == TWO18)
|
|
{
|
|
if (z[4] == 0)
|
|
{
|
|
for (i = 5; i <= p; i++)
|
|
{
|
|
if (X[i] == 0)
|
|
continue;
|
|
else
|
|
{
|
|
z[3] += 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
z[3] += 1;
|
|
}
|
|
|
|
c = (z[1] + R * (z[2] + R * z[3])) / a;
|
|
}
|
|
|
|
c *= X[0];
|
|
|
|
for (i = 1; i < EX; i++)
|
|
c *= RADIX;
|
|
for (i = 1; i > EX; i--)
|
|
c *= RADIXI;
|
|
|
|
*y = c;
|
|
# undef R
|
|
}
|
|
|
|
/* Convert a multiple precision number *X into a double precision
|
|
number *Y, Denormal case (|x| < 2**(-1022))). */
|
|
static void
|
|
denorm (const mp_no *x, double *y, int p)
|
|
{
|
|
long i, k;
|
|
long p2 = p;
|
|
double c;
|
|
mantissa_t u, z[5];
|
|
|
|
# define R RADIXI
|
|
if (EX < -44 || (EX == -44 && X[1] < TWO5))
|
|
{
|
|
*y = 0;
|
|
return;
|
|
}
|
|
|
|
if (p2 == 1)
|
|
{
|
|
if (EX == -42)
|
|
{
|
|
z[1] = X[1] + TWO10;
|
|
z[2] = 0;
|
|
z[3] = 0;
|
|
k = 3;
|
|
}
|
|
else if (EX == -43)
|
|
{
|
|
z[1] = TWO10;
|
|
z[2] = X[1];
|
|
z[3] = 0;
|
|
k = 2;
|
|
}
|
|
else
|
|
{
|
|
z[1] = TWO10;
|
|
z[2] = 0;
|
|
z[3] = X[1];
|
|
k = 1;
|
|
}
|
|
}
|
|
else if (p2 == 2)
|
|
{
|
|
if (EX == -42)
|
|
{
|
|
z[1] = X[1] + TWO10;
|
|
z[2] = X[2];
|
|
z[3] = 0;
|
|
k = 3;
|
|
}
|
|
else if (EX == -43)
|
|
{
|
|
z[1] = TWO10;
|
|
z[2] = X[1];
|
|
z[3] = X[2];
|
|
k = 2;
|
|
}
|
|
else
|
|
{
|
|
z[1] = TWO10;
|
|
z[2] = 0;
|
|
z[3] = X[1];
|
|
k = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (EX == -42)
|
|
{
|
|
z[1] = X[1] + TWO10;
|
|
z[2] = X[2];
|
|
k = 3;
|
|
}
|
|
else if (EX == -43)
|
|
{
|
|
z[1] = TWO10;
|
|
z[2] = X[1];
|
|
k = 2;
|
|
}
|
|
else
|
|
{
|
|
z[1] = TWO10;
|
|
z[2] = 0;
|
|
k = 1;
|
|
}
|
|
z[3] = X[k];
|
|
}
|
|
|
|
u = ALIGN_DOWN_TO (z[3], TWO5);
|
|
|
|
if (u == z[3])
|
|
{
|
|
for (i = k + 1; i <= p2; i++)
|
|
{
|
|
if (X[i] == 0)
|
|
continue;
|
|
else
|
|
{
|
|
z[3] += 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
c = X[0] * ((z[1] + R * (z[2] + R * z[3])) - TWO10);
|
|
|
|
*y = c * TWOM1032;
|
|
# undef R
|
|
}
|
|
|
|
/* Convert multiple precision number *X into double precision number *Y. The
|
|
result is correctly rounded to the nearest/even. */
|
|
void
|
|
__mp_dbl (const mp_no *x, double *y, int p)
|
|
{
|
|
if (X[0] == 0)
|
|
{
|
|
*y = 0;
|
|
return;
|
|
}
|
|
|
|
if (__glibc_likely (EX > -42 || (EX == -42 && X[1] >= TWO10)))
|
|
norm (x, y, p);
|
|
else
|
|
denorm (x, y, p);
|
|
}
|
|
#endif
|
|
|
|
/* Get the multiple precision equivalent of X into *Y. If the precision is too
|
|
small, the result is truncated. */
|
|
void
|
|
SECTION
|
|
__dbl_mp (double x, mp_no *y, int p)
|
|
{
|
|
long i, n;
|
|
long p2 = p;
|
|
|
|
/* Sign. */
|
|
if (x == 0)
|
|
{
|
|
Y[0] = 0;
|
|
return;
|
|
}
|
|
else if (x > 0)
|
|
Y[0] = 1;
|
|
else
|
|
{
|
|
Y[0] = -1;
|
|
x = -x;
|
|
}
|
|
|
|
/* Exponent. */
|
|
for (EY = 1; x >= RADIX; EY += 1)
|
|
x *= RADIXI;
|
|
for (; x < 1; EY -= 1)
|
|
x *= RADIX;
|
|
|
|
/* Digits. */
|
|
n = MIN (p2, 4);
|
|
for (i = 1; i <= n; i++)
|
|
{
|
|
INTEGER_OF (x, Y[i]);
|
|
x *= RADIX;
|
|
}
|
|
for (; i <= p2; i++)
|
|
Y[i] = 0;
|
|
}
|
|
|
|
/* Add magnitudes of *X and *Y assuming that abs (*X) >= abs (*Y) > 0. The
|
|
sign of the sum *Z is not changed. X and Y may overlap but not X and Z or
|
|
Y and Z. No guard digit is used. The result equals the exact sum,
|
|
truncated. */
|
|
static void
|
|
SECTION
|
|
add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
|
|
{
|
|
long i, j, k;
|
|
long p2 = p;
|
|
mantissa_t zk;
|
|
|
|
EZ = EX;
|
|
|
|
i = p2;
|
|
j = p2 + EY - EX;
|
|
k = p2 + 1;
|
|
|
|
if (__glibc_unlikely (j < 1))
|
|
{
|
|
__cpy (x, z, p);
|
|
return;
|
|
}
|
|
|
|
zk = 0;
|
|
|
|
for (; j > 0; i--, j--)
|
|
{
|
|
zk += X[i] + Y[j];
|
|
if (zk >= RADIX)
|
|
{
|
|
Z[k--] = zk - RADIX;
|
|
zk = 1;
|
|
}
|
|
else
|
|
{
|
|
Z[k--] = zk;
|
|
zk = 0;
|
|
}
|
|
}
|
|
|
|
for (; i > 0; i--)
|
|
{
|
|
zk += X[i];
|
|
if (zk >= RADIX)
|
|
{
|
|
Z[k--] = zk - RADIX;
|
|
zk = 1;
|
|
}
|
|
else
|
|
{
|
|
Z[k--] = zk;
|
|
zk = 0;
|
|
}
|
|
}
|
|
|
|
if (zk == 0)
|
|
{
|
|
for (i = 1; i <= p2; i++)
|
|
Z[i] = Z[i + 1];
|
|
}
|
|
else
|
|
{
|
|
Z[1] = zk;
|
|
EZ += 1;
|
|
}
|
|
}
|
|
|
|
/* Subtract the magnitudes of *X and *Y assuming that abs (*x) > abs (*y) > 0.
|
|
The sign of the difference *Z is not changed. X and Y may overlap but not X
|
|
and Z or Y and Z. One guard digit is used. The error is less than one
|
|
ULP. */
|
|
static void
|
|
SECTION
|
|
sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
|
|
{
|
|
long i, j, k;
|
|
long p2 = p;
|
|
mantissa_t zk;
|
|
|
|
EZ = EX;
|
|
i = p2;
|
|
j = p2 + EY - EX;
|
|
k = p2;
|
|
|
|
/* Y is too small compared to X, copy X over to the result. */
|
|
if (__glibc_unlikely (j < 1))
|
|
{
|
|
__cpy (x, z, p);
|
|
return;
|
|
}
|
|
|
|
/* The relevant least significant digit in Y is non-zero, so we factor it in
|
|
to enhance accuracy. */
|
|
if (j < p2 && Y[j + 1] > 0)
|
|
{
|
|
Z[k + 1] = RADIX - Y[j + 1];
|
|
zk = -1;
|
|
}
|
|
else
|
|
zk = Z[k + 1] = 0;
|
|
|
|
/* Subtract and borrow. */
|
|
for (; j > 0; i--, j--)
|
|
{
|
|
zk += (X[i] - Y[j]);
|
|
if (zk < 0)
|
|
{
|
|
Z[k--] = zk + RADIX;
|
|
zk = -1;
|
|
}
|
|
else
|
|
{
|
|
Z[k--] = zk;
|
|
zk = 0;
|
|
}
|
|
}
|
|
|
|
/* We're done with digits from Y, so it's just digits in X. */
|
|
for (; i > 0; i--)
|
|
{
|
|
zk += X[i];
|
|
if (zk < 0)
|
|
{
|
|
Z[k--] = zk + RADIX;
|
|
zk = -1;
|
|
}
|
|
else
|
|
{
|
|
Z[k--] = zk;
|
|
zk = 0;
|
|
}
|
|
}
|
|
|
|
/* Normalize. */
|
|
for (i = 1; Z[i] == 0; i++)
|
|
;
|
|
EZ = EZ - i + 1;
|
|
for (k = 1; i <= p2 + 1; )
|
|
Z[k++] = Z[i++];
|
|
for (; k <= p2; )
|
|
Z[k++] = 0;
|
|
}
|
|
|
|
/* Add *X and *Y and store the result in *Z. X and Y may overlap, but not X
|
|
and Z or Y and Z. One guard digit is used. The error is less than one
|
|
ULP. */
|
|
void
|
|
SECTION
|
|
__add (const mp_no *x, const mp_no *y, mp_no *z, int p)
|
|
{
|
|
int n;
|
|
|
|
if (X[0] == 0)
|
|
{
|
|
__cpy (y, z, p);
|
|
return;
|
|
}
|
|
else if (Y[0] == 0)
|
|
{
|
|
__cpy (x, z, p);
|
|
return;
|
|
}
|
|
|
|
if (X[0] == Y[0])
|
|
{
|
|
if (__acr (x, y, p) > 0)
|
|
{
|
|
add_magnitudes (x, y, z, p);
|
|
Z[0] = X[0];
|
|
}
|
|
else
|
|
{
|
|
add_magnitudes (y, x, z, p);
|
|
Z[0] = Y[0];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((n = __acr (x, y, p)) == 1)
|
|
{
|
|
sub_magnitudes (x, y, z, p);
|
|
Z[0] = X[0];
|
|
}
|
|
else if (n == -1)
|
|
{
|
|
sub_magnitudes (y, x, z, p);
|
|
Z[0] = Y[0];
|
|
}
|
|
else
|
|
Z[0] = 0;
|
|
}
|
|
}
|
|
|
|
/* Subtract *Y from *X and return the result in *Z. X and Y may overlap but
|
|
not X and Z or Y and Z. One guard digit is used. The error is less than
|
|
one ULP. */
|
|
void
|
|
SECTION
|
|
__sub (const mp_no *x, const mp_no *y, mp_no *z, int p)
|
|
{
|
|
int n;
|
|
|
|
if (X[0] == 0)
|
|
{
|
|
__cpy (y, z, p);
|
|
Z[0] = -Z[0];
|
|
return;
|
|
}
|
|
else if (Y[0] == 0)
|
|
{
|
|
__cpy (x, z, p);
|
|
return;
|
|
}
|
|
|
|
if (X[0] != Y[0])
|
|
{
|
|
if (__acr (x, y, p) > 0)
|
|
{
|
|
add_magnitudes (x, y, z, p);
|
|
Z[0] = X[0];
|
|
}
|
|
else
|
|
{
|
|
add_magnitudes (y, x, z, p);
|
|
Z[0] = -Y[0];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((n = __acr (x, y, p)) == 1)
|
|
{
|
|
sub_magnitudes (x, y, z, p);
|
|
Z[0] = X[0];
|
|
}
|
|
else if (n == -1)
|
|
{
|
|
sub_magnitudes (y, x, z, p);
|
|
Z[0] = -Y[0];
|
|
}
|
|
else
|
|
Z[0] = 0;
|
|
}
|
|
}
|
|
|
|
#ifndef NO__MUL
|
|
/* Multiply *X and *Y and store result in *Z. X and Y may overlap but not X
|
|
and Z or Y and Z. For P in [1, 2, 3], the exact result is truncated to P
|
|
digits. In case P > 3 the error is bounded by 1.001 ULP. */
|
|
void
|
|
SECTION
|
|
__mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
|
|
{
|
|
long i, j, k, ip, ip2;
|
|
long p2 = p;
|
|
mantissa_store_t zk;
|
|
const mp_no *a;
|
|
mantissa_store_t *diag;
|
|
|
|
/* Is z=0? */
|
|
if (__glibc_unlikely (X[0] * Y[0] == 0))
|
|
{
|
|
Z[0] = 0;
|
|
return;
|
|
}
|
|
|
|
/* We need not iterate through all X's and Y's since it's pointless to
|
|
multiply zeroes. Here, both are zero... */
|
|
for (ip2 = p2; ip2 > 0; ip2--)
|
|
if (X[ip2] != 0 || Y[ip2] != 0)
|
|
break;
|
|
|
|
a = X[ip2] != 0 ? y : x;
|
|
|
|
/* ... and here, at least one of them is still zero. */
|
|
for (ip = ip2; ip > 0; ip--)
|
|
if (a->d[ip] != 0)
|
|
break;
|
|
|
|
/* The product looks like this for p = 3 (as an example):
|
|
|
|
|
|
a1 a2 a3
|
|
x b1 b2 b3
|
|
-----------------------------
|
|
a1*b3 a2*b3 a3*b3
|
|
a1*b2 a2*b2 a3*b2
|
|
a1*b1 a2*b1 a3*b1
|
|
|
|
So our K needs to ideally be P*2, but we're limiting ourselves to P + 3
|
|
for P >= 3. We compute the above digits in two parts; the last P-1
|
|
digits and then the first P digits. The last P-1 digits are a sum of
|
|
products of the input digits from P to P-k where K is 0 for the least
|
|
significant digit and increases as we go towards the left. The product
|
|
term is of the form X[k]*X[P-k] as can be seen in the above example.
|
|
|
|
The first P digits are also a sum of products with the same product term,
|
|
except that the sum is from 1 to k. This is also evident from the above
|
|
example.
|
|
|
|
Another thing that becomes evident is that only the most significant
|
|
ip+ip2 digits of the result are non-zero, where ip and ip2 are the
|
|
'internal precision' of the input numbers, i.e. digits after ip and ip2
|
|
are all 0. */
|
|
|
|
k = (__glibc_unlikely (p2 < 3)) ? p2 + p2 : p2 + 3;
|
|
|
|
while (k > ip + ip2 + 1)
|
|
Z[k--] = 0;
|
|
|
|
zk = 0;
|
|
|
|
/* Precompute sums of diagonal elements so that we can directly use them
|
|
later. See the next comment to know we why need them. */
|
|
diag = alloca (k * sizeof (mantissa_store_t));
|
|
mantissa_store_t d = 0;
|
|
for (i = 1; i <= ip; i++)
|
|
{
|
|
d += X[i] * (mantissa_store_t) Y[i];
|
|
diag[i] = d;
|
|
}
|
|
while (i < k)
|
|
diag[i++] = d;
|
|
|
|
while (k > p2)
|
|
{
|
|
long lim = k / 2;
|
|
|
|
if (k % 2 == 0)
|
|
/* We want to add this only once, but since we subtract it in the sum
|
|
of products above, we add twice. */
|
|
zk += 2 * X[lim] * (mantissa_store_t) Y[lim];
|
|
|
|
for (i = k - p2, j = p2; i < j; i++, j--)
|
|
zk += (X[i] + X[j]) * (mantissa_store_t) (Y[i] + Y[j]);
|
|
|
|
zk -= diag[k - 1];
|
|
|
|
DIV_RADIX (zk, Z[k]);
|
|
k--;
|
|
}
|
|
|
|
/* The real deal. Mantissa digit Z[k] is the sum of all X[i] * Y[j] where i
|
|
goes from 1 -> k - 1 and j goes the same range in reverse. To reduce the
|
|
number of multiplications, we halve the range and if k is an even number,
|
|
add the diagonal element X[k/2]Y[k/2]. Through the half range, we compute
|
|
X[i] * Y[j] as (X[i] + X[j]) * (Y[i] + Y[j]) - X[i] * Y[i] - X[j] * Y[j].
|
|
|
|
This reduction tells us that we're summing two things, the first term
|
|
through the half range and the negative of the sum of the product of all
|
|
terms of X and Y in the full range. i.e.
|
|
|
|
SUM(X[i] * Y[i]) for k terms. This is precalculated above for each k in
|
|
a single loop so that it completes in O(n) time and can hence be directly
|
|
used in the loop below. */
|
|
while (k > 1)
|
|
{
|
|
long lim = k / 2;
|
|
|
|
if (k % 2 == 0)
|
|
/* We want to add this only once, but since we subtract it in the sum
|
|
of products above, we add twice. */
|
|
zk += 2 * X[lim] * (mantissa_store_t) Y[lim];
|
|
|
|
for (i = 1, j = k - 1; i < j; i++, j--)
|
|
zk += (X[i] + X[j]) * (mantissa_store_t) (Y[i] + Y[j]);
|
|
|
|
zk -= diag[k - 1];
|
|
|
|
DIV_RADIX (zk, Z[k]);
|
|
k--;
|
|
}
|
|
Z[k] = zk;
|
|
|
|
/* Get the exponent sum into an intermediate variable. This is a subtle
|
|
optimization, where given enough registers, all operations on the exponent
|
|
happen in registers and the result is written out only once into EZ. */
|
|
int e = EX + EY;
|
|
|
|
/* Is there a carry beyond the most significant digit? */
|
|
if (__glibc_unlikely (Z[1] == 0))
|
|
{
|
|
for (i = 1; i <= p2; i++)
|
|
Z[i] = Z[i + 1];
|
|
e--;
|
|
}
|
|
|
|
EZ = e;
|
|
Z[0] = X[0] * Y[0];
|
|
}
|
|
#endif
|
|
|
|
#ifndef NO__SQR
|
|
/* Square *X and store result in *Y. X and Y may not overlap. For P in
|
|
[1, 2, 3], the exact result is truncated to P digits. In case P > 3 the
|
|
error is bounded by 1.001 ULP. This is a faster special case of
|
|
multiplication. */
|
|
void
|
|
SECTION
|
|
__sqr (const mp_no *x, mp_no *y, int p)
|
|
{
|
|
long i, j, k, ip;
|
|
mantissa_store_t yk;
|
|
|
|
/* Is z=0? */
|
|
if (__glibc_unlikely (X[0] == 0))
|
|
{
|
|
Y[0] = 0;
|
|
return;
|
|
}
|
|
|
|
/* We need not iterate through all X's since it's pointless to
|
|
multiply zeroes. */
|
|
for (ip = p; ip > 0; ip--)
|
|
if (X[ip] != 0)
|
|
break;
|
|
|
|
k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
|
|
|
|
while (k > 2 * ip + 1)
|
|
Y[k--] = 0;
|
|
|
|
yk = 0;
|
|
|
|
while (k > p)
|
|
{
|
|
mantissa_store_t yk2 = 0;
|
|
long lim = k / 2;
|
|
|
|
if (k % 2 == 0)
|
|
yk += X[lim] * (mantissa_store_t) X[lim];
|
|
|
|
/* In __mul, this loop (and the one within the next while loop) run
|
|
between a range to calculate the mantissa as follows:
|
|
|
|
Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
|
|
+ X[n] * Y[k]
|
|
|
|
For X == Y, we can get away with summing halfway and doubling the
|
|
result. For cases where the range size is even, the mid-point needs
|
|
to be added separately (above). */
|
|
for (i = k - p, j = p; i < j; i++, j--)
|
|
yk2 += X[i] * (mantissa_store_t) X[j];
|
|
|
|
yk += 2 * yk2;
|
|
|
|
DIV_RADIX (yk, Y[k]);
|
|
k--;
|
|
}
|
|
|
|
while (k > 1)
|
|
{
|
|
mantissa_store_t yk2 = 0;
|
|
long lim = k / 2;
|
|
|
|
if (k % 2 == 0)
|
|
yk += X[lim] * (mantissa_store_t) X[lim];
|
|
|
|
/* Likewise for this loop. */
|
|
for (i = 1, j = k - 1; i < j; i++, j--)
|
|
yk2 += X[i] * (mantissa_store_t) X[j];
|
|
|
|
yk += 2 * yk2;
|
|
|
|
DIV_RADIX (yk, Y[k]);
|
|
k--;
|
|
}
|
|
Y[k] = yk;
|
|
|
|
/* Squares are always positive. */
|
|
Y[0] = 1;
|
|
|
|
/* Get the exponent sum into an intermediate variable. This is a subtle
|
|
optimization, where given enough registers, all operations on the exponent
|
|
happen in registers and the result is written out only once into EZ. */
|
|
int e = EX * 2;
|
|
|
|
/* Is there a carry beyond the most significant digit? */
|
|
if (__glibc_unlikely (Y[1] == 0))
|
|
{
|
|
for (i = 1; i <= p; i++)
|
|
Y[i] = Y[i + 1];
|
|
e--;
|
|
}
|
|
|
|
EY = e;
|
|
}
|
|
#endif
|
|
|
|
/* Invert *X and store in *Y. Relative error bound:
|
|
- For P = 2: 1.001 * R ^ (1 - P)
|
|
- For P = 3: 1.063 * R ^ (1 - P)
|
|
- For P > 3: 2.001 * R ^ (1 - P)
|
|
|
|
*X = 0 is not permissible. */
|
|
static void
|
|
SECTION
|
|
__inv (const mp_no *x, mp_no *y, int p)
|
|
{
|
|
long i;
|
|
double t;
|
|
mp_no z, w;
|
|
static const int np1[] =
|
|
{ 0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
|
|
};
|
|
|
|
__cpy (x, &z, p);
|
|
z.e = 0;
|
|
__mp_dbl (&z, &t, p);
|
|
t = 1 / t;
|
|
__dbl_mp (t, y, p);
|
|
EY -= EX;
|
|
|
|
for (i = 0; i < np1[p]; i++)
|
|
{
|
|
__cpy (y, &w, p);
|
|
__mul (x, &w, y, p);
|
|
__sub (&__mptwo, y, &z, p);
|
|
__mul (&w, &z, y, p);
|
|
}
|
|
}
|
|
|
|
/* Divide *X by *Y and store result in *Z. X and Y may overlap but not X and Z
|
|
or Y and Z. Relative error bound:
|
|
- For P = 2: 2.001 * R ^ (1 - P)
|
|
- For P = 3: 2.063 * R ^ (1 - P)
|
|
- For P > 3: 3.001 * R ^ (1 - P)
|
|
|
|
*X = 0 is not permissible. */
|
|
void
|
|
SECTION
|
|
__dvd (const mp_no *x, const mp_no *y, mp_no *z, int p)
|
|
{
|
|
mp_no w;
|
|
|
|
if (X[0] == 0)
|
|
Z[0] = 0;
|
|
else
|
|
{
|
|
__inv (y, &w, p);
|
|
__mul (x, &w, z, p);
|
|
}
|
|
}
|