mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-08 14:20:07 +00:00
33237fe83d
And make always supported. The configure option was added on glibc 2.25 and some features require it (such as hwcap mask, huge pages support, and lock elisition tuning). It also simplifies the build permutations. Changes from v1: * Remove glibc.rtld.dynamic_sort changes, it is orthogonal and needs more discussion. * Cleanup more code. Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
911 lines
27 KiB
C
911 lines
27 KiB
C
/* Malloc implementation for multiple threads without lock contention.
|
|
Copyright (C) 2001-2023 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public License as
|
|
published by the Free Software Foundation; either version 2.1 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If
|
|
not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
#include <stdbool.h>
|
|
|
|
#define TUNABLE_NAMESPACE malloc
|
|
#include <elf/dl-tunables.h>
|
|
|
|
/* Compile-time constants. */
|
|
|
|
#define HEAP_MIN_SIZE (32 * 1024)
|
|
#ifndef HEAP_MAX_SIZE
|
|
# ifdef DEFAULT_MMAP_THRESHOLD_MAX
|
|
# define HEAP_MAX_SIZE (2 * DEFAULT_MMAP_THRESHOLD_MAX)
|
|
# else
|
|
# define HEAP_MAX_SIZE (1024 * 1024) /* must be a power of two */
|
|
# endif
|
|
#endif
|
|
|
|
/* HEAP_MIN_SIZE and HEAP_MAX_SIZE limit the size of mmap()ed heaps
|
|
that are dynamically created for multi-threaded programs. The
|
|
maximum size must be a power of two, for fast determination of
|
|
which heap belongs to a chunk. It should be much larger than the
|
|
mmap threshold, so that requests with a size just below that
|
|
threshold can be fulfilled without creating too many heaps. */
|
|
|
|
/* When huge pages are used to create new arenas, the maximum and minumum
|
|
size are based on the runtime defined huge page size. */
|
|
|
|
static inline size_t
|
|
heap_min_size (void)
|
|
{
|
|
return mp_.hp_pagesize == 0 ? HEAP_MIN_SIZE : mp_.hp_pagesize;
|
|
}
|
|
|
|
static inline size_t
|
|
heap_max_size (void)
|
|
{
|
|
return mp_.hp_pagesize == 0 ? HEAP_MAX_SIZE : mp_.hp_pagesize * 4;
|
|
}
|
|
|
|
/***************************************************************************/
|
|
|
|
#define top(ar_ptr) ((ar_ptr)->top)
|
|
|
|
/* A heap is a single contiguous memory region holding (coalesceable)
|
|
malloc_chunks. It is allocated with mmap() and always starts at an
|
|
address aligned to HEAP_MAX_SIZE. */
|
|
|
|
typedef struct _heap_info
|
|
{
|
|
mstate ar_ptr; /* Arena for this heap. */
|
|
struct _heap_info *prev; /* Previous heap. */
|
|
size_t size; /* Current size in bytes. */
|
|
size_t mprotect_size; /* Size in bytes that has been mprotected
|
|
PROT_READ|PROT_WRITE. */
|
|
size_t pagesize; /* Page size used when allocating the arena. */
|
|
/* Make sure the following data is properly aligned, particularly
|
|
that sizeof (heap_info) + 2 * SIZE_SZ is a multiple of
|
|
MALLOC_ALIGNMENT. */
|
|
char pad[-3 * SIZE_SZ & MALLOC_ALIGN_MASK];
|
|
} heap_info;
|
|
|
|
/* Get a compile-time error if the heap_info padding is not correct
|
|
to make alignment work as expected in sYSMALLOc. */
|
|
extern int sanity_check_heap_info_alignment[(sizeof (heap_info)
|
|
+ 2 * SIZE_SZ) % MALLOC_ALIGNMENT
|
|
? -1 : 1];
|
|
|
|
/* Thread specific data. */
|
|
|
|
static __thread mstate thread_arena attribute_tls_model_ie;
|
|
|
|
/* Arena free list. free_list_lock synchronizes access to the
|
|
free_list variable below, and the next_free and attached_threads
|
|
members of struct malloc_state objects. No other locks must be
|
|
acquired after free_list_lock has been acquired. */
|
|
|
|
__libc_lock_define_initialized (static, free_list_lock);
|
|
#if IS_IN (libc)
|
|
static size_t narenas = 1;
|
|
#endif
|
|
static mstate free_list;
|
|
|
|
/* list_lock prevents concurrent writes to the next member of struct
|
|
malloc_state objects.
|
|
|
|
Read access to the next member is supposed to synchronize with the
|
|
atomic_write_barrier and the write to the next member in
|
|
_int_new_arena. This suffers from data races; see the FIXME
|
|
comments in _int_new_arena and reused_arena.
|
|
|
|
list_lock also prevents concurrent forks. At the time list_lock is
|
|
acquired, no arena lock must have been acquired, but it is
|
|
permitted to acquire arena locks subsequently, while list_lock is
|
|
acquired. */
|
|
__libc_lock_define_initialized (static, list_lock);
|
|
|
|
/* Already initialized? */
|
|
static bool __malloc_initialized = false;
|
|
|
|
/**************************************************************************/
|
|
|
|
|
|
/* arena_get() acquires an arena and locks the corresponding mutex.
|
|
First, try the one last locked successfully by this thread. (This
|
|
is the common case and handled with a macro for speed.) Then, loop
|
|
once over the circularly linked list of arenas. If no arena is
|
|
readily available, create a new one. In this latter case, `size'
|
|
is just a hint as to how much memory will be required immediately
|
|
in the new arena. */
|
|
|
|
#define arena_get(ptr, size) do { \
|
|
ptr = thread_arena; \
|
|
arena_lock (ptr, size); \
|
|
} while (0)
|
|
|
|
#define arena_lock(ptr, size) do { \
|
|
if (ptr) \
|
|
__libc_lock_lock (ptr->mutex); \
|
|
else \
|
|
ptr = arena_get2 ((size), NULL); \
|
|
} while (0)
|
|
|
|
/* find the heap and corresponding arena for a given ptr */
|
|
|
|
static inline heap_info *
|
|
heap_for_ptr (void *ptr)
|
|
{
|
|
size_t max_size = heap_max_size ();
|
|
return PTR_ALIGN_DOWN (ptr, max_size);
|
|
}
|
|
|
|
static inline struct malloc_state *
|
|
arena_for_chunk (mchunkptr ptr)
|
|
{
|
|
return chunk_main_arena (ptr) ? &main_arena : heap_for_ptr (ptr)->ar_ptr;
|
|
}
|
|
|
|
|
|
/**************************************************************************/
|
|
|
|
/* atfork support. */
|
|
|
|
/* The following three functions are called around fork from a
|
|
multi-threaded process. We do not use the general fork handler
|
|
mechanism to make sure that our handlers are the last ones being
|
|
called, so that other fork handlers can use the malloc
|
|
subsystem. */
|
|
|
|
void
|
|
__malloc_fork_lock_parent (void)
|
|
{
|
|
if (!__malloc_initialized)
|
|
return;
|
|
|
|
/* We do not acquire free_list_lock here because we completely
|
|
reconstruct free_list in __malloc_fork_unlock_child. */
|
|
|
|
__libc_lock_lock (list_lock);
|
|
|
|
for (mstate ar_ptr = &main_arena;; )
|
|
{
|
|
__libc_lock_lock (ar_ptr->mutex);
|
|
ar_ptr = ar_ptr->next;
|
|
if (ar_ptr == &main_arena)
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
__malloc_fork_unlock_parent (void)
|
|
{
|
|
if (!__malloc_initialized)
|
|
return;
|
|
|
|
for (mstate ar_ptr = &main_arena;; )
|
|
{
|
|
__libc_lock_unlock (ar_ptr->mutex);
|
|
ar_ptr = ar_ptr->next;
|
|
if (ar_ptr == &main_arena)
|
|
break;
|
|
}
|
|
__libc_lock_unlock (list_lock);
|
|
}
|
|
|
|
void
|
|
__malloc_fork_unlock_child (void)
|
|
{
|
|
if (!__malloc_initialized)
|
|
return;
|
|
|
|
/* Push all arenas to the free list, except thread_arena, which is
|
|
attached to the current thread. */
|
|
__libc_lock_init (free_list_lock);
|
|
if (thread_arena != NULL)
|
|
thread_arena->attached_threads = 1;
|
|
free_list = NULL;
|
|
for (mstate ar_ptr = &main_arena;; )
|
|
{
|
|
__libc_lock_init (ar_ptr->mutex);
|
|
if (ar_ptr != thread_arena)
|
|
{
|
|
/* This arena is no longer attached to any thread. */
|
|
ar_ptr->attached_threads = 0;
|
|
ar_ptr->next_free = free_list;
|
|
free_list = ar_ptr;
|
|
}
|
|
ar_ptr = ar_ptr->next;
|
|
if (ar_ptr == &main_arena)
|
|
break;
|
|
}
|
|
|
|
__libc_lock_init (list_lock);
|
|
}
|
|
|
|
#define TUNABLE_CALLBACK_FNDECL(__name, __type) \
|
|
static inline int do_ ## __name (__type value); \
|
|
static void \
|
|
TUNABLE_CALLBACK (__name) (tunable_val_t *valp) \
|
|
{ \
|
|
__type value = (__type) (valp)->numval; \
|
|
do_ ## __name (value); \
|
|
}
|
|
|
|
TUNABLE_CALLBACK_FNDECL (set_mmap_threshold, size_t)
|
|
TUNABLE_CALLBACK_FNDECL (set_mmaps_max, int32_t)
|
|
TUNABLE_CALLBACK_FNDECL (set_top_pad, size_t)
|
|
TUNABLE_CALLBACK_FNDECL (set_perturb_byte, int32_t)
|
|
TUNABLE_CALLBACK_FNDECL (set_trim_threshold, size_t)
|
|
TUNABLE_CALLBACK_FNDECL (set_arena_max, size_t)
|
|
TUNABLE_CALLBACK_FNDECL (set_arena_test, size_t)
|
|
#if USE_TCACHE
|
|
TUNABLE_CALLBACK_FNDECL (set_tcache_max, size_t)
|
|
TUNABLE_CALLBACK_FNDECL (set_tcache_count, size_t)
|
|
TUNABLE_CALLBACK_FNDECL (set_tcache_unsorted_limit, size_t)
|
|
#endif
|
|
TUNABLE_CALLBACK_FNDECL (set_mxfast, size_t)
|
|
TUNABLE_CALLBACK_FNDECL (set_hugetlb, size_t)
|
|
|
|
#if USE_TCACHE
|
|
static void tcache_key_initialize (void);
|
|
#endif
|
|
|
|
static void
|
|
ptmalloc_init (void)
|
|
{
|
|
if (__malloc_initialized)
|
|
return;
|
|
|
|
__malloc_initialized = true;
|
|
|
|
#if USE_TCACHE
|
|
tcache_key_initialize ();
|
|
#endif
|
|
|
|
#ifdef USE_MTAG
|
|
if ((TUNABLE_GET_FULL (glibc, mem, tagging, int32_t, NULL) & 1) != 0)
|
|
{
|
|
/* If the tunable says that we should be using tagged memory
|
|
and that morecore does not support tagged regions, then
|
|
disable it. */
|
|
if (__MTAG_SBRK_UNTAGGED)
|
|
__always_fail_morecore = true;
|
|
|
|
mtag_enabled = true;
|
|
mtag_mmap_flags = __MTAG_MMAP_FLAGS;
|
|
}
|
|
#endif
|
|
|
|
#if defined SHARED && IS_IN (libc)
|
|
/* In case this libc copy is in a non-default namespace, never use
|
|
brk. Likewise if dlopened from statically linked program. The
|
|
generic sbrk implementation also enforces this, but it is not
|
|
used on Hurd. */
|
|
if (!__libc_initial)
|
|
__always_fail_morecore = true;
|
|
#endif
|
|
|
|
thread_arena = &main_arena;
|
|
|
|
malloc_init_state (&main_arena);
|
|
|
|
TUNABLE_GET (top_pad, size_t, TUNABLE_CALLBACK (set_top_pad));
|
|
TUNABLE_GET (perturb, int32_t, TUNABLE_CALLBACK (set_perturb_byte));
|
|
TUNABLE_GET (mmap_threshold, size_t, TUNABLE_CALLBACK (set_mmap_threshold));
|
|
TUNABLE_GET (trim_threshold, size_t, TUNABLE_CALLBACK (set_trim_threshold));
|
|
TUNABLE_GET (mmap_max, int32_t, TUNABLE_CALLBACK (set_mmaps_max));
|
|
TUNABLE_GET (arena_max, size_t, TUNABLE_CALLBACK (set_arena_max));
|
|
TUNABLE_GET (arena_test, size_t, TUNABLE_CALLBACK (set_arena_test));
|
|
# if USE_TCACHE
|
|
TUNABLE_GET (tcache_max, size_t, TUNABLE_CALLBACK (set_tcache_max));
|
|
TUNABLE_GET (tcache_count, size_t, TUNABLE_CALLBACK (set_tcache_count));
|
|
TUNABLE_GET (tcache_unsorted_limit, size_t,
|
|
TUNABLE_CALLBACK (set_tcache_unsorted_limit));
|
|
# endif
|
|
TUNABLE_GET (mxfast, size_t, TUNABLE_CALLBACK (set_mxfast));
|
|
TUNABLE_GET (hugetlb, size_t, TUNABLE_CALLBACK (set_hugetlb));
|
|
if (mp_.hp_pagesize > 0)
|
|
/* Force mmap for main arena instead of sbrk, so hugepages are explicitly
|
|
used. */
|
|
__always_fail_morecore = true;
|
|
}
|
|
|
|
/* Managing heaps and arenas (for concurrent threads) */
|
|
|
|
#if MALLOC_DEBUG > 1
|
|
|
|
/* Print the complete contents of a single heap to stderr. */
|
|
|
|
static void
|
|
dump_heap (heap_info *heap)
|
|
{
|
|
char *ptr;
|
|
mchunkptr p;
|
|
|
|
fprintf (stderr, "Heap %p, size %10lx:\n", heap, (long) heap->size);
|
|
ptr = (heap->ar_ptr != (mstate) (heap + 1)) ?
|
|
(char *) (heap + 1) : (char *) (heap + 1) + sizeof (struct malloc_state);
|
|
p = (mchunkptr) (((uintptr_t) ptr + MALLOC_ALIGN_MASK) &
|
|
~MALLOC_ALIGN_MASK);
|
|
for (;; )
|
|
{
|
|
fprintf (stderr, "chunk %p size %10lx", p, (long) chunksize_nomask(p));
|
|
if (p == top (heap->ar_ptr))
|
|
{
|
|
fprintf (stderr, " (top)\n");
|
|
break;
|
|
}
|
|
else if (chunksize_nomask(p) == (0 | PREV_INUSE))
|
|
{
|
|
fprintf (stderr, " (fence)\n");
|
|
break;
|
|
}
|
|
fprintf (stderr, "\n");
|
|
p = next_chunk (p);
|
|
}
|
|
}
|
|
#endif /* MALLOC_DEBUG > 1 */
|
|
|
|
/* If consecutive mmap (0, HEAP_MAX_SIZE << 1, ...) calls return decreasing
|
|
addresses as opposed to increasing, new_heap would badly fragment the
|
|
address space. In that case remember the second HEAP_MAX_SIZE part
|
|
aligned to HEAP_MAX_SIZE from last mmap (0, HEAP_MAX_SIZE << 1, ...)
|
|
call (if it is already aligned) and try to reuse it next time. We need
|
|
no locking for it, as kernel ensures the atomicity for us - worst case
|
|
we'll call mmap (addr, HEAP_MAX_SIZE, ...) for some value of addr in
|
|
multiple threads, but only one will succeed. */
|
|
static char *aligned_heap_area;
|
|
|
|
/* Create a new heap. size is automatically rounded up to a multiple
|
|
of the page size. */
|
|
|
|
static heap_info *
|
|
alloc_new_heap (size_t size, size_t top_pad, size_t pagesize,
|
|
int mmap_flags)
|
|
{
|
|
char *p1, *p2;
|
|
unsigned long ul;
|
|
heap_info *h;
|
|
size_t min_size = heap_min_size ();
|
|
size_t max_size = heap_max_size ();
|
|
|
|
if (size + top_pad < min_size)
|
|
size = min_size;
|
|
else if (size + top_pad <= max_size)
|
|
size += top_pad;
|
|
else if (size > max_size)
|
|
return 0;
|
|
else
|
|
size = max_size;
|
|
size = ALIGN_UP (size, pagesize);
|
|
|
|
/* A memory region aligned to a multiple of max_size is needed.
|
|
No swap space needs to be reserved for the following large
|
|
mapping (on Linux, this is the case for all non-writable mappings
|
|
anyway). */
|
|
p2 = MAP_FAILED;
|
|
if (aligned_heap_area)
|
|
{
|
|
p2 = (char *) MMAP (aligned_heap_area, max_size, PROT_NONE, mmap_flags);
|
|
aligned_heap_area = NULL;
|
|
if (p2 != MAP_FAILED && ((unsigned long) p2 & (max_size - 1)))
|
|
{
|
|
__munmap (p2, max_size);
|
|
p2 = MAP_FAILED;
|
|
}
|
|
}
|
|
if (p2 == MAP_FAILED)
|
|
{
|
|
p1 = (char *) MMAP (0, max_size << 1, PROT_NONE, mmap_flags);
|
|
if (p1 != MAP_FAILED)
|
|
{
|
|
p2 = (char *) (((uintptr_t) p1 + (max_size - 1))
|
|
& ~(max_size - 1));
|
|
ul = p2 - p1;
|
|
if (ul)
|
|
__munmap (p1, ul);
|
|
else
|
|
aligned_heap_area = p2 + max_size;
|
|
__munmap (p2 + max_size, max_size - ul);
|
|
}
|
|
else
|
|
{
|
|
/* Try to take the chance that an allocation of only max_size
|
|
is already aligned. */
|
|
p2 = (char *) MMAP (0, max_size, PROT_NONE, mmap_flags);
|
|
if (p2 == MAP_FAILED)
|
|
return 0;
|
|
|
|
if ((unsigned long) p2 & (max_size - 1))
|
|
{
|
|
__munmap (p2, max_size);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
if (__mprotect (p2, size, mtag_mmap_flags | PROT_READ | PROT_WRITE) != 0)
|
|
{
|
|
__munmap (p2, max_size);
|
|
return 0;
|
|
}
|
|
|
|
madvise_thp (p2, size);
|
|
|
|
h = (heap_info *) p2;
|
|
h->size = size;
|
|
h->mprotect_size = size;
|
|
h->pagesize = pagesize;
|
|
LIBC_PROBE (memory_heap_new, 2, h, h->size);
|
|
return h;
|
|
}
|
|
|
|
static heap_info *
|
|
new_heap (size_t size, size_t top_pad)
|
|
{
|
|
if (__glibc_unlikely (mp_.hp_pagesize != 0))
|
|
{
|
|
heap_info *h = alloc_new_heap (size, top_pad, mp_.hp_pagesize,
|
|
mp_.hp_flags);
|
|
if (h != NULL)
|
|
return h;
|
|
}
|
|
return alloc_new_heap (size, top_pad, GLRO (dl_pagesize), 0);
|
|
}
|
|
|
|
/* Grow a heap. size is automatically rounded up to a
|
|
multiple of the page size. */
|
|
|
|
static int
|
|
grow_heap (heap_info *h, long diff)
|
|
{
|
|
size_t pagesize = h->pagesize;
|
|
size_t max_size = heap_max_size ();
|
|
long new_size;
|
|
|
|
diff = ALIGN_UP (diff, pagesize);
|
|
new_size = (long) h->size + diff;
|
|
if ((unsigned long) new_size > (unsigned long) max_size)
|
|
return -1;
|
|
|
|
if ((unsigned long) new_size > h->mprotect_size)
|
|
{
|
|
if (__mprotect ((char *) h + h->mprotect_size,
|
|
(unsigned long) new_size - h->mprotect_size,
|
|
mtag_mmap_flags | PROT_READ | PROT_WRITE) != 0)
|
|
return -2;
|
|
|
|
h->mprotect_size = new_size;
|
|
}
|
|
|
|
h->size = new_size;
|
|
LIBC_PROBE (memory_heap_more, 2, h, h->size);
|
|
return 0;
|
|
}
|
|
|
|
/* Shrink a heap. */
|
|
|
|
static int
|
|
shrink_heap (heap_info *h, long diff)
|
|
{
|
|
long new_size;
|
|
|
|
new_size = (long) h->size - diff;
|
|
if (new_size < (long) sizeof (*h))
|
|
return -1;
|
|
|
|
/* Try to re-map the extra heap space freshly to save memory, and make it
|
|
inaccessible. See malloc-sysdep.h to know when this is true. */
|
|
if (__glibc_unlikely (check_may_shrink_heap ()))
|
|
{
|
|
if ((char *) MMAP ((char *) h + new_size, diff, PROT_NONE,
|
|
MAP_FIXED) == (char *) MAP_FAILED)
|
|
return -2;
|
|
|
|
h->mprotect_size = new_size;
|
|
}
|
|
else
|
|
__madvise ((char *) h + new_size, diff, MADV_DONTNEED);
|
|
/*fprintf(stderr, "shrink %p %08lx\n", h, new_size);*/
|
|
|
|
h->size = new_size;
|
|
LIBC_PROBE (memory_heap_less, 2, h, h->size);
|
|
return 0;
|
|
}
|
|
|
|
/* Delete a heap. */
|
|
|
|
static int
|
|
heap_trim (heap_info *heap, size_t pad)
|
|
{
|
|
mstate ar_ptr = heap->ar_ptr;
|
|
mchunkptr top_chunk = top (ar_ptr), p;
|
|
heap_info *prev_heap;
|
|
long new_size, top_size, top_area, extra, prev_size, misalign;
|
|
size_t max_size = heap_max_size ();
|
|
|
|
/* Can this heap go away completely? */
|
|
while (top_chunk == chunk_at_offset (heap, sizeof (*heap)))
|
|
{
|
|
prev_heap = heap->prev;
|
|
prev_size = prev_heap->size - (MINSIZE - 2 * SIZE_SZ);
|
|
p = chunk_at_offset (prev_heap, prev_size);
|
|
/* fencepost must be properly aligned. */
|
|
misalign = ((long) p) & MALLOC_ALIGN_MASK;
|
|
p = chunk_at_offset (prev_heap, prev_size - misalign);
|
|
assert (chunksize_nomask (p) == (0 | PREV_INUSE)); /* must be fencepost */
|
|
p = prev_chunk (p);
|
|
new_size = chunksize (p) + (MINSIZE - 2 * SIZE_SZ) + misalign;
|
|
assert (new_size > 0 && new_size < (long) (2 * MINSIZE));
|
|
if (!prev_inuse (p))
|
|
new_size += prev_size (p);
|
|
assert (new_size > 0 && new_size < max_size);
|
|
if (new_size + (max_size - prev_heap->size) < pad + MINSIZE
|
|
+ heap->pagesize)
|
|
break;
|
|
ar_ptr->system_mem -= heap->size;
|
|
LIBC_PROBE (memory_heap_free, 2, heap, heap->size);
|
|
if ((char *) heap + max_size == aligned_heap_area)
|
|
aligned_heap_area = NULL;
|
|
__munmap (heap, max_size);
|
|
heap = prev_heap;
|
|
if (!prev_inuse (p)) /* consolidate backward */
|
|
{
|
|
p = prev_chunk (p);
|
|
unlink_chunk (ar_ptr, p);
|
|
}
|
|
assert (((unsigned long) ((char *) p + new_size) & (heap->pagesize - 1))
|
|
== 0);
|
|
assert (((char *) p + new_size) == ((char *) heap + heap->size));
|
|
top (ar_ptr) = top_chunk = p;
|
|
set_head (top_chunk, new_size | PREV_INUSE);
|
|
/*check_chunk(ar_ptr, top_chunk);*/
|
|
}
|
|
|
|
/* Uses similar logic for per-thread arenas as the main arena with systrim
|
|
and _int_free by preserving the top pad and rounding down to the nearest
|
|
page. */
|
|
top_size = chunksize (top_chunk);
|
|
if ((unsigned long)(top_size) <
|
|
(unsigned long)(mp_.trim_threshold))
|
|
return 0;
|
|
|
|
top_area = top_size - MINSIZE - 1;
|
|
if (top_area < 0 || (size_t) top_area <= pad)
|
|
return 0;
|
|
|
|
/* Release in pagesize units and round down to the nearest page. */
|
|
extra = ALIGN_DOWN(top_area - pad, heap->pagesize);
|
|
if (extra == 0)
|
|
return 0;
|
|
|
|
/* Try to shrink. */
|
|
if (shrink_heap (heap, extra) != 0)
|
|
return 0;
|
|
|
|
ar_ptr->system_mem -= extra;
|
|
|
|
/* Success. Adjust top accordingly. */
|
|
set_head (top_chunk, (top_size - extra) | PREV_INUSE);
|
|
/*check_chunk(ar_ptr, top_chunk);*/
|
|
return 1;
|
|
}
|
|
|
|
/* Create a new arena with initial size "size". */
|
|
|
|
#if IS_IN (libc)
|
|
/* If REPLACED_ARENA is not NULL, detach it from this thread. Must be
|
|
called while free_list_lock is held. */
|
|
static void
|
|
detach_arena (mstate replaced_arena)
|
|
{
|
|
if (replaced_arena != NULL)
|
|
{
|
|
assert (replaced_arena->attached_threads > 0);
|
|
/* The current implementation only detaches from main_arena in
|
|
case of allocation failure. This means that it is likely not
|
|
beneficial to put the arena on free_list even if the
|
|
reference count reaches zero. */
|
|
--replaced_arena->attached_threads;
|
|
}
|
|
}
|
|
|
|
static mstate
|
|
_int_new_arena (size_t size)
|
|
{
|
|
mstate a;
|
|
heap_info *h;
|
|
char *ptr;
|
|
unsigned long misalign;
|
|
|
|
h = new_heap (size + (sizeof (*h) + sizeof (*a) + MALLOC_ALIGNMENT),
|
|
mp_.top_pad);
|
|
if (!h)
|
|
{
|
|
/* Maybe size is too large to fit in a single heap. So, just try
|
|
to create a minimally-sized arena and let _int_malloc() attempt
|
|
to deal with the large request via mmap_chunk(). */
|
|
h = new_heap (sizeof (*h) + sizeof (*a) + MALLOC_ALIGNMENT, mp_.top_pad);
|
|
if (!h)
|
|
return 0;
|
|
}
|
|
a = h->ar_ptr = (mstate) (h + 1);
|
|
malloc_init_state (a);
|
|
a->attached_threads = 1;
|
|
/*a->next = NULL;*/
|
|
a->system_mem = a->max_system_mem = h->size;
|
|
|
|
/* Set up the top chunk, with proper alignment. */
|
|
ptr = (char *) (a + 1);
|
|
misalign = (uintptr_t) chunk2mem (ptr) & MALLOC_ALIGN_MASK;
|
|
if (misalign > 0)
|
|
ptr += MALLOC_ALIGNMENT - misalign;
|
|
top (a) = (mchunkptr) ptr;
|
|
set_head (top (a), (((char *) h + h->size) - ptr) | PREV_INUSE);
|
|
|
|
LIBC_PROBE (memory_arena_new, 2, a, size);
|
|
mstate replaced_arena = thread_arena;
|
|
thread_arena = a;
|
|
__libc_lock_init (a->mutex);
|
|
|
|
__libc_lock_lock (list_lock);
|
|
|
|
/* Add the new arena to the global list. */
|
|
a->next = main_arena.next;
|
|
/* FIXME: The barrier is an attempt to synchronize with read access
|
|
in reused_arena, which does not acquire list_lock while
|
|
traversing the list. */
|
|
atomic_write_barrier ();
|
|
main_arena.next = a;
|
|
|
|
__libc_lock_unlock (list_lock);
|
|
|
|
__libc_lock_lock (free_list_lock);
|
|
detach_arena (replaced_arena);
|
|
__libc_lock_unlock (free_list_lock);
|
|
|
|
/* Lock this arena. NB: Another thread may have been attached to
|
|
this arena because the arena is now accessible from the
|
|
main_arena.next list and could have been picked by reused_arena.
|
|
This can only happen for the last arena created (before the arena
|
|
limit is reached). At this point, some arena has to be attached
|
|
to two threads. We could acquire the arena lock before list_lock
|
|
to make it less likely that reused_arena picks this new arena,
|
|
but this could result in a deadlock with
|
|
__malloc_fork_lock_parent. */
|
|
|
|
__libc_lock_lock (a->mutex);
|
|
|
|
return a;
|
|
}
|
|
|
|
|
|
/* Remove an arena from free_list. */
|
|
static mstate
|
|
get_free_list (void)
|
|
{
|
|
mstate replaced_arena = thread_arena;
|
|
mstate result = free_list;
|
|
if (result != NULL)
|
|
{
|
|
__libc_lock_lock (free_list_lock);
|
|
result = free_list;
|
|
if (result != NULL)
|
|
{
|
|
free_list = result->next_free;
|
|
|
|
/* The arena will be attached to this thread. */
|
|
assert (result->attached_threads == 0);
|
|
result->attached_threads = 1;
|
|
|
|
detach_arena (replaced_arena);
|
|
}
|
|
__libc_lock_unlock (free_list_lock);
|
|
|
|
if (result != NULL)
|
|
{
|
|
LIBC_PROBE (memory_arena_reuse_free_list, 1, result);
|
|
__libc_lock_lock (result->mutex);
|
|
thread_arena = result;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Remove the arena from the free list (if it is present).
|
|
free_list_lock must have been acquired by the caller. */
|
|
static void
|
|
remove_from_free_list (mstate arena)
|
|
{
|
|
mstate *previous = &free_list;
|
|
for (mstate p = free_list; p != NULL; p = p->next_free)
|
|
{
|
|
assert (p->attached_threads == 0);
|
|
if (p == arena)
|
|
{
|
|
/* Remove the requested arena from the list. */
|
|
*previous = p->next_free;
|
|
break;
|
|
}
|
|
else
|
|
previous = &p->next_free;
|
|
}
|
|
}
|
|
|
|
/* Lock and return an arena that can be reused for memory allocation.
|
|
Avoid AVOID_ARENA as we have already failed to allocate memory in
|
|
it and it is currently locked. */
|
|
static mstate
|
|
reused_arena (mstate avoid_arena)
|
|
{
|
|
mstate result;
|
|
/* FIXME: Access to next_to_use suffers from data races. */
|
|
static mstate next_to_use;
|
|
if (next_to_use == NULL)
|
|
next_to_use = &main_arena;
|
|
|
|
/* Iterate over all arenas (including those linked from
|
|
free_list). */
|
|
result = next_to_use;
|
|
do
|
|
{
|
|
if (!__libc_lock_trylock (result->mutex))
|
|
goto out;
|
|
|
|
/* FIXME: This is a data race, see _int_new_arena. */
|
|
result = result->next;
|
|
}
|
|
while (result != next_to_use);
|
|
|
|
/* Avoid AVOID_ARENA as we have already failed to allocate memory
|
|
in that arena and it is currently locked. */
|
|
if (result == avoid_arena)
|
|
result = result->next;
|
|
|
|
/* No arena available without contention. Wait for the next in line. */
|
|
LIBC_PROBE (memory_arena_reuse_wait, 3, &result->mutex, result, avoid_arena);
|
|
__libc_lock_lock (result->mutex);
|
|
|
|
out:
|
|
/* Attach the arena to the current thread. */
|
|
{
|
|
/* Update the arena thread attachment counters. */
|
|
mstate replaced_arena = thread_arena;
|
|
__libc_lock_lock (free_list_lock);
|
|
detach_arena (replaced_arena);
|
|
|
|
/* We may have picked up an arena on the free list. We need to
|
|
preserve the invariant that no arena on the free list has a
|
|
positive attached_threads counter (otherwise,
|
|
arena_thread_freeres cannot use the counter to determine if the
|
|
arena needs to be put on the free list). We unconditionally
|
|
remove the selected arena from the free list. The caller of
|
|
reused_arena checked the free list and observed it to be empty,
|
|
so the list is very short. */
|
|
remove_from_free_list (result);
|
|
|
|
++result->attached_threads;
|
|
|
|
__libc_lock_unlock (free_list_lock);
|
|
}
|
|
|
|
LIBC_PROBE (memory_arena_reuse, 2, result, avoid_arena);
|
|
thread_arena = result;
|
|
next_to_use = result->next;
|
|
|
|
return result;
|
|
}
|
|
|
|
static mstate
|
|
arena_get2 (size_t size, mstate avoid_arena)
|
|
{
|
|
mstate a;
|
|
|
|
static size_t narenas_limit;
|
|
|
|
a = get_free_list ();
|
|
if (a == NULL)
|
|
{
|
|
/* Nothing immediately available, so generate a new arena. */
|
|
if (narenas_limit == 0)
|
|
{
|
|
if (mp_.arena_max != 0)
|
|
narenas_limit = mp_.arena_max;
|
|
else if (narenas > mp_.arena_test)
|
|
{
|
|
int n = __get_nprocs_sched ();
|
|
|
|
if (n >= 1)
|
|
narenas_limit = NARENAS_FROM_NCORES (n);
|
|
else
|
|
/* We have no information about the system. Assume two
|
|
cores. */
|
|
narenas_limit = NARENAS_FROM_NCORES (2);
|
|
}
|
|
}
|
|
repeat:;
|
|
size_t n = narenas;
|
|
/* NB: the following depends on the fact that (size_t)0 - 1 is a
|
|
very large number and that the underflow is OK. If arena_max
|
|
is set the value of arena_test is irrelevant. If arena_test
|
|
is set but narenas is not yet larger or equal to arena_test
|
|
narenas_limit is 0. There is no possibility for narenas to
|
|
be too big for the test to always fail since there is not
|
|
enough address space to create that many arenas. */
|
|
if (__glibc_unlikely (n <= narenas_limit - 1))
|
|
{
|
|
if (catomic_compare_and_exchange_bool_acq (&narenas, n + 1, n))
|
|
goto repeat;
|
|
a = _int_new_arena (size);
|
|
if (__glibc_unlikely (a == NULL))
|
|
catomic_decrement (&narenas);
|
|
}
|
|
else
|
|
a = reused_arena (avoid_arena);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/* If we don't have the main arena, then maybe the failure is due to running
|
|
out of mmapped areas, so we can try allocating on the main arena.
|
|
Otherwise, it is likely that sbrk() has failed and there is still a chance
|
|
to mmap(), so try one of the other arenas. */
|
|
static mstate
|
|
arena_get_retry (mstate ar_ptr, size_t bytes)
|
|
{
|
|
LIBC_PROBE (memory_arena_retry, 2, bytes, ar_ptr);
|
|
if (ar_ptr != &main_arena)
|
|
{
|
|
__libc_lock_unlock (ar_ptr->mutex);
|
|
ar_ptr = &main_arena;
|
|
__libc_lock_lock (ar_ptr->mutex);
|
|
}
|
|
else
|
|
{
|
|
__libc_lock_unlock (ar_ptr->mutex);
|
|
ar_ptr = arena_get2 (bytes, ar_ptr);
|
|
}
|
|
|
|
return ar_ptr;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
__malloc_arena_thread_freeres (void)
|
|
{
|
|
/* Shut down the thread cache first. This could deallocate data for
|
|
the thread arena, so do this before we put the arena on the free
|
|
list. */
|
|
tcache_thread_shutdown ();
|
|
|
|
mstate a = thread_arena;
|
|
thread_arena = NULL;
|
|
|
|
if (a != NULL)
|
|
{
|
|
__libc_lock_lock (free_list_lock);
|
|
/* If this was the last attached thread for this arena, put the
|
|
arena on the free list. */
|
|
assert (a->attached_threads > 0);
|
|
if (--a->attached_threads == 0)
|
|
{
|
|
a->next_free = free_list;
|
|
free_list = a;
|
|
}
|
|
__libc_lock_unlock (free_list_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-basic-offset: 2
|
|
* End:
|
|
*/
|