glibc/math/s_cexp_template.c
Joseph Myers e886c36771 Clean up some complex functions raising FE_INVALID.
Some of the complex arithmetic functions have the following pattern:
in some piece of code, one part of the input (real or imaginary,
depending on the function) is either infinite or NaN.  Part of the
result is to be set to NaN in either case, and FE_INVALID raised only
if the relevant part of the input was infinite.

In such a case, there is no actual need for the conditional on the
type of the input, since subtracting the relevant part of the input
from itself will produce a NaN, with FE_INVALID only if the relevant
part of the input was infinite.  This simplifies the code, and as a
quality-of-implementation matter also improves things by propagating
NaN payloads.  (Right now these functions always raise FE_INVALID for
signaling NaN arguments because of the call to fpclassify - at least
unless glibc is built with -Os - but if fpclassify moves to using
integer arithmetic in future, doing arithmetic on the NaN argument
also ensures an exception for sNaNs.)

Tested for x86_64 and x86.

	* math/s_ccosh_template.c (M_DECL_FUNC (__ccosh)): Instead of
	raising FE_INVALID with feraisexcept in case where part of
	argument is infinite, subtract that part of argument from itself.
	* math/s_cexp_template.c (M_DECL_FUNC (__cexp)): Likewise.
	* math/s_csin_template.c (M_DECL_FUNC (__csin)): Likewise.
	* math/s_csinh_template.c (M_DECL_FUNC (__csinh)): Likewise.
2016-10-14 00:12:56 +00:00

155 lines
3.7 KiB
C

/* Return value of complex exponential function for a float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
CFLOAT
M_DECL_FUNC (__cexp) (CFLOAT x)
{
CFLOAT retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
if (__real__ x > t)
{
FLOAT exp_t = M_EXP (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
}
}
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = M_MAX * cosix;
__imag__ retval = M_MAX * sinix;
}
else
{
FLOAT exp_val = M_EXP (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = M_NAN;
__imag__ retval = M_NAN;
feraiseexcept (FE_INVALID);
}
}
else if (__glibc_likely (rcls == FP_INFINITE))
{
/* Real part is infinite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
FLOAT value = signbit (__real__ x) ? 0 : M_HUGE_VAL;
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
__real__ retval = M_COPYSIGN (value, cosix);
__imag__ retval = M_COPYSIGN (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
__real__ retval = M_HUGE_VAL;
__imag__ retval = __imag__ x - __imag__ x;
}
else
{
__real__ retval = 0;
__imag__ retval = M_COPYSIGN (0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
__real__ retval = M_NAN;
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
__imag__ retval = M_NAN;
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
}
}
return retval;
}
declare_mgen_alias (__cexp, cexp)
#if M_LIBM_NEED_COMPAT (cexp)
declare_mgen_libm_compat (__cexp, cexp)
#endif