mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-15 01:21:06 +00:00
220622dde5
This patch adds a new macro, libm_alias_finite, to define all _finite symbol. It sets all _finite symbol as compat symbol based on its first version (obtained from the definition at built generated first-versions.h). The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need special treatment in code that is shared between long double and float128. It is done by adding a list, similar to internal symbol redifinition, on sysdeps/ieee754/float128/float128_private.h. Alpha also needs some tricky changes to ensure we still emit 2 compat symbols for sqrt(f). Passes buildmanyglibc. Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
435 lines
9.2 KiB
ArmAsm
435 lines
9.2 KiB
ArmAsm
/* ix87 specific implementation of pow function.
|
||
Copyright (C) 1996-2020 Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, see
|
||
<https://www.gnu.org/licenses/>. */
|
||
|
||
#include <machine/asm.h>
|
||
#include <x86_64-math-asm.h>
|
||
#include <libm-alias-finite.h>
|
||
|
||
.section .rodata.cst8,"aM",@progbits,8
|
||
|
||
.p2align 3
|
||
.type one,@object
|
||
one: .double 1.0
|
||
ASM_SIZE_DIRECTIVE(one)
|
||
.type p2,@object
|
||
p2: .byte 0, 0, 0, 0, 0, 0, 0x10, 0x40
|
||
ASM_SIZE_DIRECTIVE(p2)
|
||
.type p63,@object
|
||
p63: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
|
||
ASM_SIZE_DIRECTIVE(p63)
|
||
.type p64,@object
|
||
p64: .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x43
|
||
ASM_SIZE_DIRECTIVE(p64)
|
||
.type p78,@object
|
||
p78: .byte 0, 0, 0, 0, 0, 0, 0xd0, 0x44
|
||
ASM_SIZE_DIRECTIVE(p78)
|
||
.type pm79,@object
|
||
pm79: .byte 0, 0, 0, 0, 0, 0, 0, 0x3b
|
||
ASM_SIZE_DIRECTIVE(pm79)
|
||
|
||
.section .rodata.cst16,"aM",@progbits,16
|
||
|
||
.p2align 3
|
||
.type infinity,@object
|
||
inf_zero:
|
||
infinity:
|
||
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
|
||
ASM_SIZE_DIRECTIVE(infinity)
|
||
.type zero,@object
|
||
zero: .double 0.0
|
||
ASM_SIZE_DIRECTIVE(zero)
|
||
.type minf_mzero,@object
|
||
minf_mzero:
|
||
minfinity:
|
||
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
|
||
mzero:
|
||
.byte 0, 0, 0, 0, 0, 0, 0, 0x80
|
||
ASM_SIZE_DIRECTIVE(minf_mzero)
|
||
DEFINE_LDBL_MIN
|
||
|
||
#ifdef PIC
|
||
# define MO(op) op##(%rip)
|
||
#else
|
||
# define MO(op) op
|
||
#endif
|
||
|
||
.text
|
||
ENTRY(__ieee754_powl)
|
||
fldt 24(%rsp) // y
|
||
fxam
|
||
|
||
|
||
fnstsw
|
||
movb %ah, %dl
|
||
andb $0x45, %ah
|
||
cmpb $0x40, %ah // is y == 0 ?
|
||
je 11f
|
||
|
||
cmpb $0x05, %ah // is y == <EFBFBD>inf ?
|
||
je 12f
|
||
|
||
cmpb $0x01, %ah // is y == NaN ?
|
||
je 30f
|
||
|
||
fldt 8(%rsp) // x : y
|
||
|
||
fxam
|
||
fnstsw
|
||
movb %ah, %dh
|
||
andb $0x45, %ah
|
||
cmpb $0x40, %ah
|
||
je 20f // x is <EFBFBD>0
|
||
|
||
cmpb $0x05, %ah
|
||
je 15f // x is <EFBFBD>inf
|
||
|
||
cmpb $0x01, %ah
|
||
je 31f // x is NaN
|
||
|
||
fxch // y : x
|
||
|
||
/* fistpll raises invalid exception for |y| >= 1L<<63. */
|
||
fldl MO(p63) // 1L<<63 : y : x
|
||
fld %st(1) // y : 1L<<63 : y : x
|
||
fabs // |y| : 1L<<63 : y : x
|
||
fcomip %st(1), %st // 1L<<63 : y : x
|
||
fstp %st(0) // y : x
|
||
jnc 2f
|
||
|
||
/* First see whether `y' is a natural number. In this case we
|
||
can use a more precise algorithm. */
|
||
fld %st // y : y : x
|
||
fistpll -8(%rsp) // y : x
|
||
fildll -8(%rsp) // int(y) : y : x
|
||
fucomip %st(1),%st // y : x
|
||
je 9f
|
||
|
||
// If y has absolute value at most 0x1p-79, then any finite
|
||
// nonzero x will result in 1. Saturate y to those bounds to
|
||
// avoid underflow in the calculation of y*log2(x).
|
||
fldl MO(pm79) // 0x1p-79 : y : x
|
||
fld %st(1) // y : 0x1p-79 : y : x
|
||
fabs // |y| : 0x1p-79 : y : x
|
||
fcomip %st(1), %st // 0x1p-79 : y : x
|
||
fstp %st(0) // y : x
|
||
jnc 3f
|
||
fstp %st(0) // pop y
|
||
fldl MO(pm79) // 0x1p-79 : x
|
||
testb $2, %dl
|
||
jnz 3f // y > 0
|
||
fchs // -0x1p-79 : x
|
||
jmp 3f
|
||
|
||
9: /* OK, we have an integer value for y. Unless very small
|
||
(we use < 4), use the algorithm for real exponent to avoid
|
||
accumulation of errors. */
|
||
fldl MO(p2) // 4 : y : x
|
||
fld %st(1) // y : 4 : y : x
|
||
fabs // |y| : 4 : y : x
|
||
fcomip %st(1), %st // 4 : y : x
|
||
fstp %st(0) // y : x
|
||
jnc 3f
|
||
mov -8(%rsp),%eax
|
||
mov -4(%rsp),%edx
|
||
orl $0, %edx
|
||
fstp %st(0) // x
|
||
jns 4f // y >= 0, jump
|
||
fdivrl MO(one) // 1/x (now referred to as x)
|
||
negl %eax
|
||
adcl $0, %edx
|
||
negl %edx
|
||
4: fldl MO(one) // 1 : x
|
||
fxch
|
||
|
||
/* If y is even, take the absolute value of x. Otherwise,
|
||
ensure all intermediate values that might overflow have the
|
||
sign of x. */
|
||
testb $1, %al
|
||
jnz 6f
|
||
fabs
|
||
|
||
6: shrdl $1, %edx, %eax
|
||
jnc 5f
|
||
fxch
|
||
fabs
|
||
fmul %st(1) // x : ST*x
|
||
fxch
|
||
5: fld %st // x : x : ST*x
|
||
fabs // |x| : x : ST*x
|
||
fmulp // |x|*x : ST*x
|
||
shrl $1, %edx
|
||
movl %eax, %ecx
|
||
orl %edx, %ecx
|
||
jnz 6b
|
||
fstp %st(0) // ST*x
|
||
LDBL_CHECK_FORCE_UFLOW_NONNAN
|
||
ret
|
||
|
||
/* y is <20>NAN */
|
||
30: fldt 8(%rsp) // x : y
|
||
fldl MO(one) // 1.0 : x : y
|
||
fucomip %st(1),%st // x : y
|
||
je 32f
|
||
31: /* At least one argument NaN, and result should be NaN. */
|
||
faddp
|
||
ret
|
||
32: jc 31b
|
||
/* pow (1, NaN); check if the NaN signaling. */
|
||
testb $0x40, 31(%rsp)
|
||
jz 31b
|
||
fstp %st(1)
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
2: // y is a large integer (absolute value at least 1L<<63).
|
||
// If y has absolute value at least 1L<<78, then any finite
|
||
// nonzero x will result in 0 (underflow), 1 or infinity (overflow).
|
||
// Saturate y to those bounds to avoid overflow in the calculation
|
||
// of y*log2(x).
|
||
fldl MO(p78) // 1L<<78 : y : x
|
||
fld %st(1) // y : 1L<<78 : y : x
|
||
fabs // |y| : 1L<<78 : y : x
|
||
fcomip %st(1), %st // 1L<<78 : y : x
|
||
fstp %st(0) // y : x
|
||
jc 3f
|
||
fstp %st(0) // pop y
|
||
fldl MO(p78) // 1L<<78 : x
|
||
testb $2, %dl
|
||
jz 3f // y > 0
|
||
fchs // -(1L<<78) : x
|
||
.align ALIGNARG(4)
|
||
3: /* y is a real number. */
|
||
subq $40, %rsp
|
||
cfi_adjust_cfa_offset (40)
|
||
fstpt 16(%rsp) // x
|
||
fstpt (%rsp) // <empty>
|
||
call HIDDEN_JUMPTARGET (__powl_helper) // <result>
|
||
addq $40, %rsp
|
||
cfi_adjust_cfa_offset (-40)
|
||
ret
|
||
|
||
// pow(x,<EFBFBD>0) = 1, unless x is sNaN
|
||
.align ALIGNARG(4)
|
||
11: fstp %st(0) // pop y
|
||
fldt 8(%rsp) // x
|
||
fxam
|
||
fnstsw
|
||
andb $0x45, %ah
|
||
cmpb $0x01, %ah
|
||
je 112f // x is NaN
|
||
111: fstp %st(0)
|
||
fldl MO(one)
|
||
ret
|
||
|
||
112: testb $0x40, 15(%rsp)
|
||
jnz 111b
|
||
fadd %st(0)
|
||
ret
|
||
|
||
// y == <EFBFBD>inf
|
||
.align ALIGNARG(4)
|
||
12: fstp %st(0) // pop y
|
||
fldl MO(one) // 1
|
||
fldt 8(%rsp) // x : 1
|
||
fabs // abs(x) : 1
|
||
fucompp // < 1, == 1, or > 1
|
||
fnstsw
|
||
andb $0x45, %ah
|
||
cmpb $0x45, %ah
|
||
je 13f // jump if x is NaN
|
||
|
||
cmpb $0x40, %ah
|
||
je 14f // jump if |x| == 1
|
||
|
||
shlb $1, %ah
|
||
xorb %ah, %dl
|
||
andl $2, %edx
|
||
#ifdef PIC
|
||
lea inf_zero(%rip),%rcx
|
||
fldl (%rcx, %rdx, 4)
|
||
#else
|
||
fldl inf_zero(,%rdx, 4)
|
||
#endif
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
14: fldl MO(one)
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
13: fldt 8(%rsp) // load x == NaN
|
||
fadd %st(0)
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
// x is <EFBFBD>inf
|
||
15: fstp %st(0) // y
|
||
testb $2, %dh
|
||
jz 16f // jump if x == +inf
|
||
|
||
// fistpll raises invalid exception for |y| >= 1L<<63, but y
|
||
// may be odd unless we know |y| >= 1L<<64.
|
||
fldl MO(p64) // 1L<<64 : y
|
||
fld %st(1) // y : 1L<<64 : y
|
||
fabs // |y| : 1L<<64 : y
|
||
fcomip %st(1), %st // 1L<<64 : y
|
||
fstp %st(0) // y
|
||
jnc 16f
|
||
fldl MO(p63) // p63 : y
|
||
fxch // y : p63
|
||
fprem // y%p63 : p63
|
||
fstp %st(1) // y%p63
|
||
|
||
// We must find out whether y is an odd integer.
|
||
fld %st // y : y
|
||
fistpll -8(%rsp) // y
|
||
fildll -8(%rsp) // int(y) : y
|
||
fucomip %st(1),%st
|
||
ffreep %st // <empty>
|
||
jne 17f
|
||
|
||
// OK, the value is an integer, but is it odd?
|
||
mov -8(%rsp), %eax
|
||
mov -4(%rsp), %edx
|
||
andb $1, %al
|
||
jz 18f // jump if not odd
|
||
// It's an odd integer.
|
||
shrl $31, %edx
|
||
#ifdef PIC
|
||
lea minf_mzero(%rip),%rcx
|
||
fldl (%rcx, %rdx, 8)
|
||
#else
|
||
fldl minf_mzero(,%rdx, 8)
|
||
#endif
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
16: fcompl MO(zero)
|
||
fnstsw
|
||
shrl $5, %eax
|
||
andl $8, %eax
|
||
#ifdef PIC
|
||
lea inf_zero(%rip),%rcx
|
||
fldl (%rcx, %rax, 1)
|
||
#else
|
||
fldl inf_zero(,%rax, 1)
|
||
#endif
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
17: shll $30, %edx // sign bit for y in right position
|
||
18: shrl $31, %edx
|
||
#ifdef PIC
|
||
lea inf_zero(%rip),%rcx
|
||
fldl (%rcx, %rdx, 8)
|
||
#else
|
||
fldl inf_zero(,%rdx, 8)
|
||
#endif
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
// x is <EFBFBD>0
|
||
20: fstp %st(0) // y
|
||
testb $2, %dl
|
||
jz 21f // y > 0
|
||
|
||
// x is <EFBFBD>0 and y is < 0. We must find out whether y is an odd integer.
|
||
testb $2, %dh
|
||
jz 25f
|
||
|
||
// fistpll raises invalid exception for |y| >= 1L<<63, but y
|
||
// may be odd unless we know |y| >= 1L<<64.
|
||
fldl MO(p64) // 1L<<64 : y
|
||
fld %st(1) // y : 1L<<64 : y
|
||
fabs // |y| : 1L<<64 : y
|
||
fcomip %st(1), %st // 1L<<64 : y
|
||
fstp %st(0) // y
|
||
jnc 25f
|
||
fldl MO(p63) // p63 : y
|
||
fxch // y : p63
|
||
fprem // y%p63 : p63
|
||
fstp %st(1) // y%p63
|
||
|
||
fld %st // y : y
|
||
fistpll -8(%rsp) // y
|
||
fildll -8(%rsp) // int(y) : y
|
||
fucomip %st(1),%st
|
||
ffreep %st // <empty>
|
||
jne 26f
|
||
|
||
// OK, the value is an integer, but is it odd?
|
||
mov -8(%rsp),%eax
|
||
mov -4(%rsp),%edx
|
||
andb $1, %al
|
||
jz 27f // jump if not odd
|
||
// It's an odd integer.
|
||
// Raise divide-by-zero exception and get minus infinity value.
|
||
fldl MO(one)
|
||
fdivl MO(zero)
|
||
fchs
|
||
ret
|
||
|
||
25: fstp %st(0)
|
||
26:
|
||
27: // Raise divide-by-zero exception and get infinity value.
|
||
fldl MO(one)
|
||
fdivl MO(zero)
|
||
ret
|
||
|
||
.align ALIGNARG(4)
|
||
// x is <EFBFBD>0 and y is > 0. We must find out whether y is an odd integer.
|
||
21: testb $2, %dh
|
||
jz 22f
|
||
|
||
// fistpll raises invalid exception for |y| >= 1L<<63, but y
|
||
// may be odd unless we know |y| >= 1L<<64.
|
||
fldl MO(p64) // 1L<<64 : y
|
||
fxch // y : 1L<<64
|
||
fcomi %st(1), %st // y : 1L<<64
|
||
fstp %st(1) // y
|
||
jnc 22f
|
||
fldl MO(p63) // p63 : y
|
||
fxch // y : p63
|
||
fprem // y%p63 : p63
|
||
fstp %st(1) // y%p63
|
||
|
||
fld %st // y : y
|
||
fistpll -8(%rsp) // y
|
||
fildll -8(%rsp) // int(y) : y
|
||
fucomip %st(1),%st
|
||
ffreep %st // <empty>
|
||
jne 23f
|
||
|
||
// OK, the value is an integer, but is it odd?
|
||
mov -8(%rsp),%eax
|
||
mov -4(%rsp),%edx
|
||
andb $1, %al
|
||
jz 24f // jump if not odd
|
||
// It's an odd integer.
|
||
fldl MO(mzero)
|
||
ret
|
||
|
||
22: fstp %st(0)
|
||
23:
|
||
24: fldl MO(zero)
|
||
ret
|
||
|
||
END(__ieee754_powl)
|
||
libm_alias_finite (__ieee754_powl, __powl)
|