mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-29 16:21:07 +00:00
0b87419b69
Similar to various other bugs in this area, ctan and ctanh can fail to raise the underflow exception for some cases of results that are tiny and inexact. This patch forces the exception in a similar way to previous fixes. Tested for x86_64 and x86. [BZ #18595] * math/s_ctan.c (__ctan): Force underflow exception for results whose real or imaginary part has small absolute value. * math/s_ctanf.c (__ctanf): Likewise. * math/s_ctanh.c (__ctanh): Likewise. * math/s_ctanhf.c (__ctanhf): Likewise. * math/s_ctanhl.c (__ctanhl): Likewise. * math/s_ctanl.c (__ctanl): Likewise. * math/auto-libm-test-in: Do not allow missing underflow for ctan and ctanh. Add more tests of ctan and ctanh.
135 lines
3.6 KiB
C
135 lines
3.6 KiB
C
/* Complex hyperbole tangent for long double.
|
|
Copyright (C) 1997-2015 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
/* To avoid spurious underflows, use this definition to treat IBM long
|
|
double as approximating an IEEE-style format. */
|
|
#if LDBL_MANT_DIG == 106
|
|
# undef LDBL_EPSILON
|
|
# define LDBL_EPSILON 0x1p-106L
|
|
#endif
|
|
|
|
__complex__ long double
|
|
__ctanhl (__complex__ long double x)
|
|
{
|
|
__complex__ long double res;
|
|
|
|
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
|
|
{
|
|
if (__isinf_nsl (__real__ x))
|
|
{
|
|
__real__ res = __copysignl (1.0, __real__ x);
|
|
__imag__ res = __copysignl (0.0, __imag__ x);
|
|
}
|
|
else if (__imag__ x == 0.0)
|
|
{
|
|
res = x;
|
|
}
|
|
else
|
|
{
|
|
__real__ res = __nanl ("");
|
|
__imag__ res = __nanl ("");
|
|
|
|
if (__isinf_nsl (__imag__ x))
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
long double sinix, cosix;
|
|
long double den;
|
|
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2);
|
|
|
|
/* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
|
|
= (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */
|
|
|
|
if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
|
|
{
|
|
__sincosl (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0;
|
|
}
|
|
|
|
if (fabsl (__real__ x) > t)
|
|
{
|
|
/* Avoid intermediate overflow when the imaginary part of
|
|
the result may be subnormal. Ignoring negligible terms,
|
|
the real part is +/- 1, the imaginary part is
|
|
sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */
|
|
long double exp_2t = __ieee754_expl (2 * t);
|
|
|
|
__real__ res = __copysignl (1.0, __real__ x);
|
|
__imag__ res = 4 * sinix * cosix;
|
|
__real__ x = fabsl (__real__ x);
|
|
__real__ x -= t;
|
|
__imag__ res /= exp_2t;
|
|
if (__real__ x > t)
|
|
{
|
|
/* Underflow (original real part of x has absolute value
|
|
> 2t). */
|
|
__imag__ res /= exp_2t;
|
|
}
|
|
else
|
|
__imag__ res /= __ieee754_expl (2 * __real__ x);
|
|
}
|
|
else
|
|
{
|
|
long double sinhrx, coshrx;
|
|
if (fabsl (__real__ x) > LDBL_MIN)
|
|
{
|
|
sinhrx = __ieee754_sinhl (__real__ x);
|
|
coshrx = __ieee754_coshl (__real__ x);
|
|
}
|
|
else
|
|
{
|
|
sinhrx = __real__ x;
|
|
coshrx = 1.0L;
|
|
}
|
|
|
|
if (fabsl (sinhrx) > fabsl (cosix) * LDBL_EPSILON)
|
|
den = sinhrx * sinhrx + cosix * cosix;
|
|
else
|
|
den = cosix * cosix;
|
|
__real__ res = sinhrx * coshrx / den;
|
|
__imag__ res = sinix * cosix / den;
|
|
}
|
|
if (fabsl (__real__ res) < LDBL_MIN)
|
|
{
|
|
long double force_underflow = __real__ res * __real__ res;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
if (fabsl (__imag__ res) < LDBL_MIN)
|
|
{
|
|
long double force_underflow = __imag__ res * __imag__ res;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
weak_alias (__ctanhl, ctanhl)
|