mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-23 21:40:12 +00:00
433f49c402
* nis/Versions (libnsl) [GLIBC_PRIVATE]: Export _nsl_default_nss. * nis/nss-nis.c: Move /etc/default/nss handling to... * nis/nss-default.c: ...here. New file. * nis/libnsl.h: New file. * nis/nss-nis.h: Remove NSS_FLAG_* definitions and _nis_default_nss plus auxilary definitions. * nis/nss_nis/nis-initgroups.c: Use _nsl_default_nss instead of _nis_default_nss. * nis/nss_nis/nis-service.c: Likewise. 2006-04-07 Steven Munroe <sjmunroe@us.ibm.com> * sysdeps/powerpc/fpu/bits/mathinline.h [__WORDSIZE == 64 || _ARCH_PWR4]: Define __CPU_HAS_FSQRT. (__ieee754_sqrt): Fix comment. (__ieee754_sqrtf): Fix comment. * sysdeps/powerpc/fpu/e_sqrt.c (__ieee754_sqrt): Fix comment. Check __CPU_HAS_FSQRT instead of dl_hwcap. * sysdeps/powerpc/fpu/e_sqrtf.c (__ieee754_sqrtf): Likewise.
185 lines
6.0 KiB
C
185 lines
6.0 KiB
C
/* Double-precision floating point square root.
|
|
Copyright (C) 1997, 2002, 2003, 2004 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <fenv_libc.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <sysdep.h>
|
|
#include <ldsodefs.h>
|
|
|
|
static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */
|
|
static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
|
|
static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
|
|
static const float two108 = 3.245185536584267269e+32;
|
|
static const float twom54 = 5.551115123125782702e-17;
|
|
extern const float __t_sqrt[1024];
|
|
|
|
/* The method is based on a description in
|
|
Computation of elementary functions on the IBM RISC System/6000 processor,
|
|
P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
|
|
Basically, it consists of two interleaved Newton-Rhapson approximations,
|
|
one to find the actual square root, and one to find its reciprocal
|
|
without the expense of a division operation. The tricky bit here
|
|
is the use of the POWER/PowerPC multiply-add operation to get the
|
|
required accuracy with high speed.
|
|
|
|
The argument reduction works by a combination of table lookup to
|
|
obtain the initial guesses, and some careful modification of the
|
|
generated guesses (which mostly runs on the integer unit, while the
|
|
Newton-Rhapson is running on the FPU). */
|
|
|
|
#ifdef __STDC__
|
|
double
|
|
__slow_ieee754_sqrt (double x)
|
|
#else
|
|
double
|
|
__slow_ieee754_sqrt (x)
|
|
double x;
|
|
#endif
|
|
{
|
|
const float inf = a_inf.value;
|
|
|
|
if (x > 0)
|
|
{
|
|
/* schedule the EXTRACT_WORDS to get separation between the store
|
|
and the load. */
|
|
ieee_double_shape_type ew_u;
|
|
ieee_double_shape_type iw_u;
|
|
ew_u.value = (x);
|
|
if (x != inf)
|
|
{
|
|
/* Variables named starting with 's' exist in the
|
|
argument-reduced space, so that 2 > sx >= 0.5,
|
|
1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
|
|
Variables named ending with 'i' are integer versions of
|
|
floating-point values. */
|
|
double sx; /* The value of which we're trying to find the
|
|
square root. */
|
|
double sg, g; /* Guess of the square root of x. */
|
|
double sd, d; /* Difference between the square of the guess and x. */
|
|
double sy; /* Estimate of 1/2g (overestimated by 1ulp). */
|
|
double sy2; /* 2*sy */
|
|
double e; /* Difference between y*g and 1/2 (se = e * fsy). */
|
|
double shx; /* == sx * fsg */
|
|
double fsg; /* sg*fsg == g. */
|
|
fenv_t fe; /* Saved floating-point environment (stores rounding
|
|
mode and whether the inexact exception is
|
|
enabled). */
|
|
uint32_t xi0, xi1, sxi, fsgi;
|
|
const float *t_sqrt;
|
|
|
|
fe = fegetenv_register ();
|
|
/* complete the EXTRACT_WORDS (xi0,xi1,x) operation. */
|
|
xi0 = ew_u.parts.msw;
|
|
xi1 = ew_u.parts.lsw;
|
|
relax_fenv_state ();
|
|
sxi = (xi0 & 0x3fffffff) | 0x3fe00000;
|
|
/* schedule the INSERT_WORDS (sx, sxi, xi1) to get separation
|
|
between the store and the load. */
|
|
iw_u.parts.msw = sxi;
|
|
iw_u.parts.lsw = xi1;
|
|
t_sqrt = __t_sqrt + (xi0 >> (52 - 32 - 8 - 1) & 0x3fe);
|
|
sg = t_sqrt[0];
|
|
sy = t_sqrt[1];
|
|
/* complete the INSERT_WORDS (sx, sxi, xi1) operation. */
|
|
sx = iw_u.value;
|
|
|
|
/* Here we have three Newton-Rhapson iterations each of a
|
|
division and a square root and the remainder of the
|
|
argument reduction, all interleaved. */
|
|
sd = -(sg * sg - sx);
|
|
fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
|
|
sy2 = sy + sy;
|
|
sg = sy * sd + sg; /* 16-bit approximation to sqrt(sx). */
|
|
|
|
/* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
|
|
between the store and the load. */
|
|
INSERT_WORDS (fsg, fsgi, 0);
|
|
iw_u.parts.msw = fsgi;
|
|
iw_u.parts.lsw = (0);
|
|
e = -(sy * sg - almost_half);
|
|
sd = -(sg * sg - sx);
|
|
if ((xi0 & 0x7ff00000) == 0)
|
|
goto denorm;
|
|
sy = sy + e * sy2;
|
|
sg = sg + sy * sd; /* 32-bit approximation to sqrt(sx). */
|
|
sy2 = sy + sy;
|
|
/* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */
|
|
fsg = iw_u.value;
|
|
e = -(sy * sg - almost_half);
|
|
sd = -(sg * sg - sx);
|
|
sy = sy + e * sy2;
|
|
shx = sx * fsg;
|
|
sg = sg + sy * sd; /* 64-bit approximation to sqrt(sx),
|
|
but perhaps rounded incorrectly. */
|
|
sy2 = sy + sy;
|
|
g = sg * fsg;
|
|
e = -(sy * sg - almost_half);
|
|
d = -(g * sg - shx);
|
|
sy = sy + e * sy2;
|
|
fesetenv_register (fe);
|
|
return g + sy * d;
|
|
denorm:
|
|
/* For denormalised numbers, we normalise, calculate the
|
|
square root, and return an adjusted result. */
|
|
fesetenv_register (fe);
|
|
return __slow_ieee754_sqrt (x * two108) * twom54;
|
|
}
|
|
}
|
|
else if (x < 0)
|
|
{
|
|
/* For some reason, some PowerPC32 processors don't implement
|
|
FE_INVALID_SQRT. */
|
|
#ifdef FE_INVALID_SQRT
|
|
feraiseexcept (FE_INVALID_SQRT);
|
|
if (!fetestexcept (FE_INVALID))
|
|
#endif
|
|
feraiseexcept (FE_INVALID);
|
|
x = a_nan.value;
|
|
}
|
|
return f_wash (x);
|
|
}
|
|
|
|
#ifdef __STDC__
|
|
double
|
|
__ieee754_sqrt (double x)
|
|
#else
|
|
double
|
|
__ieee754_sqrt (x)
|
|
double x;
|
|
#endif
|
|
{
|
|
double z;
|
|
|
|
/* If the CPU is 64-bit we can use the optional FP instructions. */
|
|
if (__CPU_HAS_FSQRT)
|
|
{
|
|
/* Volatile is required to prevent the compiler from moving the
|
|
fsqrt instruction above the branch. */
|
|
__asm __volatile (" fsqrt %0,%1\n"
|
|
:"=f" (z):"f" (x));
|
|
}
|
|
else
|
|
z = __slow_ieee754_sqrt (x);
|
|
|
|
return z;
|
|
}
|