mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-17 06:00:08 +00:00
97 lines
4.0 KiB
C
97 lines
4.0 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* Copyright (C) 2001-2024 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/******************************************************************/
|
|
/* */
|
|
/* MODULE_NAME:utan.h */
|
|
/* */
|
|
/* common data and variables prototype and definition */
|
|
/******************************************************************/
|
|
|
|
#ifndef UTAN_H
|
|
#define UTAN_H
|
|
|
|
#ifdef BIG_ENDI
|
|
static const mynumber
|
|
/* polynomial I */
|
|
/**/ d3 = {{0x3FD55555, 0x55555555} }, /* 0.333... */
|
|
/**/ d5 = {{0x3FC11111, 0x111107C6} }, /* 0.133... */
|
|
/**/ d7 = {{0x3FABA1BA, 0x1CDB8745} }, /* . */
|
|
/**/ d9 = {{0x3F9664ED, 0x49CFC666} }, /* . */
|
|
/**/ d11 = {{0x3F82385A, 0x3CF2E4EA} }, /* . */
|
|
/* polynomial II */
|
|
/* polynomial III */
|
|
/**/ e0 = {{0x3FD55555, 0x55554DBD} }, /* . */
|
|
/**/ e1 = {{0x3FC11112, 0xE0A6B45F} }, /* . */
|
|
|
|
/* constants */
|
|
/**/ mfftnhf = {{0xc02f0000, 0x00000000} }, /*-15.5 */
|
|
|
|
/**/ g1 = {{0x3e4b096c, 0x00000000} }, /* 1.259e-8 */
|
|
/**/ g2 = {{0x3faf212d, 0x00000000} }, /* 0.0608 */
|
|
/**/ g3 = {{0x3fe92f1a, 0x00000000} }, /* 0.787 */
|
|
/**/ g4 = {{0x40390000, 0x00000000} }, /* 25.0 */
|
|
/**/ g5 = {{0x4197d784, 0x00000000} }, /* 1e8 */
|
|
/**/ gy2 = {{0x3faf212d, 0x00000000} }, /* 0.0608 */
|
|
|
|
/**/ mp1 = {{0x3FF921FB, 0x58000000} },
|
|
/**/ mp2 = {{0xBE4DDE97, 0x3C000000} },
|
|
/**/ mp3 = {{0xBC8CB3B3, 0x99D747F2} },
|
|
/**/ pp3 = {{0xBC8CB3B3, 0x98000000} },
|
|
/**/ pp4 = {{0xbacd747f, 0x23e32ed7} },
|
|
/**/ hpinv = {{0x3FE45F30, 0x6DC9C883} },
|
|
/**/ toint = {{0x43380000, 0x00000000} };
|
|
|
|
#else
|
|
#ifdef LITTLE_ENDI
|
|
|
|
static const mynumber
|
|
/* polynomial I */
|
|
/**/ d3 = {{0x55555555, 0x3FD55555} }, /* 0.333... */
|
|
/**/ d5 = {{0x111107C6, 0x3FC11111} }, /* 0.133... */
|
|
/**/ d7 = {{0x1CDB8745, 0x3FABA1BA} }, /* . */
|
|
/**/ d9 = {{0x49CFC666, 0x3F9664ED} }, /* . */
|
|
/**/ d11 = {{0x3CF2E4EA, 0x3F82385A} }, /* . */
|
|
/* polynomial II */
|
|
/* polynomial III */
|
|
/**/ e0 = {{0x55554DBD, 0x3FD55555} }, /* . */
|
|
/**/ e1 = {{0xE0A6B45F, 0x3FC11112} }, /* . */
|
|
|
|
/* constants */
|
|
/**/ mfftnhf = {{0x00000000, 0xc02f0000} }, /*-15.5 */
|
|
|
|
/**/ g1 = {{0x00000000, 0x3e4b096c} }, /* 1.259e-8 */
|
|
/**/ g2 = {{0x00000000, 0x3faf212d} }, /* 0.0608 */
|
|
/**/ g3 = {{0x00000000, 0x3fe92f1a} }, /* 0.787 */
|
|
/**/ g4 = {{0x00000000, 0x40390000} }, /* 25.0 */
|
|
/**/ g5 = {{0x00000000, 0x4197d784} }, /* 1e8 */
|
|
/**/ gy2 = {{0x00000000, 0x3faf212d} }, /* 0.0608 */
|
|
|
|
/**/ mp1 = {{0x58000000, 0x3FF921FB} },
|
|
/**/ mp2 = {{0x3C000000, 0xBE4DDE97} },
|
|
/**/ mp3 = {{0x99D747F2, 0xBC8CB3B3} },
|
|
/**/ pp3 = {{0x98000000, 0xBC8CB3B3} },
|
|
/**/ pp4 = {{0x23e32ed7, 0xbacd747f} },
|
|
/**/ hpinv = {{0x6DC9C883, 0x3FE45F30} },
|
|
/**/ toint = {{0x00000000, 0x43380000} };
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#endif
|