mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-27 21:20:18 +00:00
b0abbc2103
Fix for values near a power of two, and some tidies. [BZ #16739] * sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Correct output when value is near a power of two. Use int64_t for lx and remove casts. Use decimal rather than hex exponent constants. Don't use long double multiplication when double will suffice. * math/libm-test.inc (nextafter_test_data): Add tests. * NEWS: Add 16739 and 16786 to bug list.
152 lines
5.0 KiB
C
152 lines
5.0 KiB
C
/* s_nextafterl.c -- long double version of s_nextafter.c.
|
|
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
|
static char rcsid[] = "$NetBSD: $";
|
|
#endif
|
|
|
|
/* IEEE functions
|
|
* nextafterl(x,y)
|
|
* return the next machine floating-point number of x in the
|
|
* direction toward y.
|
|
* Special cases:
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <math_ldbl_opt.h>
|
|
|
|
long double __nextafterl(long double x, long double y)
|
|
{
|
|
int64_t hx, hy, ihx, ihy, lx;
|
|
double xhi, xlo, yhi;
|
|
|
|
ldbl_unpack (x, &xhi, &xlo);
|
|
EXTRACT_WORDS64 (hx, xhi);
|
|
EXTRACT_WORDS64 (lx, xlo);
|
|
yhi = ldbl_high (y);
|
|
EXTRACT_WORDS64 (hy, yhi);
|
|
ihx = hx&0x7fffffffffffffffLL; /* |hx| */
|
|
ihy = hy&0x7fffffffffffffffLL; /* |hy| */
|
|
|
|
if((ihx>0x7ff0000000000000LL) || /* x is nan */
|
|
(ihy>0x7ff0000000000000LL)) /* y is nan */
|
|
return x+y; /* signal the nan */
|
|
if(x==y)
|
|
return y; /* x=y, return y */
|
|
if(ihx == 0) { /* x == 0 */
|
|
long double u; /* return +-minsubnormal */
|
|
hy = (hy & 0x8000000000000000ULL) | 1;
|
|
INSERT_WORDS64 (yhi, hy);
|
|
x = yhi;
|
|
u = math_opt_barrier (x);
|
|
u = u * u;
|
|
math_force_eval (u); /* raise underflow flag */
|
|
return x;
|
|
}
|
|
|
|
long double u;
|
|
if(x > y) { /* x > y, x -= ulp */
|
|
/* This isn't the largest magnitude correctly rounded
|
|
long double as you can see from the lowest mantissa
|
|
bit being zero. It is however the largest magnitude
|
|
long double with a 106 bit mantissa, and nextafterl
|
|
is insane with variable precision. So to make
|
|
nextafterl sane we assume 106 bit precision. */
|
|
if((hx==0xffefffffffffffffLL)&&(lx==0xfc8ffffffffffffeLL)) {
|
|
u = x+x; /* overflow, return -inf */
|
|
math_force_eval (u);
|
|
return y;
|
|
}
|
|
if (hx >= 0x7ff0000000000000LL) {
|
|
u = 0x1.fffffffffffff7ffffffffffff8p+1023L;
|
|
return u;
|
|
}
|
|
if(ihx <= 0x0360000000000000LL) { /* x <= LDBL_MIN */
|
|
u = math_opt_barrier (x);
|
|
x -= __LDBL_DENORM_MIN__;
|
|
if (ihx < 0x0360000000000000LL
|
|
|| (hx > 0 && lx <= 0)
|
|
|| (hx < 0 && lx > 1)) {
|
|
u = u * u;
|
|
math_force_eval (u); /* raise underflow flag */
|
|
}
|
|
return x;
|
|
}
|
|
/* If the high double is an exact power of two and the low
|
|
double is the opposite sign, then 1ulp is one less than
|
|
what we might determine from the high double. Similarly
|
|
if X is an exact power of two, and positive, because
|
|
making it a little smaller will result in the exponent
|
|
decreasing by one and normalisation of the mantissa. */
|
|
if ((hx & 0x000fffffffffffffLL) == 0
|
|
&& ((lx != 0 && (hx ^ lx) < 0)
|
|
|| (lx == 0 && hx >= 0)))
|
|
ihx -= 1LL << 52;
|
|
if (ihx < (106LL << 52)) { /* ulp will denormal */
|
|
INSERT_WORDS64 (yhi, ihx & (0x7ffLL<<52));
|
|
u = yhi * 0x1p-105;
|
|
} else {
|
|
INSERT_WORDS64 (yhi, (ihx & (0x7ffLL<<52))-(105LL<<52));
|
|
u = yhi;
|
|
}
|
|
return x - u;
|
|
} else { /* x < y, x += ulp */
|
|
if((hx==0x7fefffffffffffffLL)&&(lx==0x7c8ffffffffffffeLL)) {
|
|
u = x+x; /* overflow, return +inf */
|
|
math_force_eval (u);
|
|
return y;
|
|
}
|
|
if ((uint64_t) hx >= 0xfff0000000000000ULL) {
|
|
u = -0x1.fffffffffffff7ffffffffffff8p+1023L;
|
|
return u;
|
|
}
|
|
if(ihx <= 0x0360000000000000LL) { /* x <= LDBL_MIN */
|
|
u = math_opt_barrier (x);
|
|
x += __LDBL_DENORM_MIN__;
|
|
if (ihx < 0x0360000000000000LL
|
|
|| (hx > 0 && lx < 0 && lx != 0x8000000000000001LL)
|
|
|| (hx < 0 && lx >= 0)) {
|
|
u = u * u;
|
|
math_force_eval (u); /* raise underflow flag */
|
|
}
|
|
if (x == 0.0L) /* handle negative __LDBL_DENORM_MIN__ case */
|
|
x = -0.0L;
|
|
return x;
|
|
}
|
|
/* If the high double is an exact power of two and the low
|
|
double is the opposite sign, then 1ulp is one less than
|
|
what we might determine from the high double. Similarly
|
|
if X is an exact power of two, and negative, because
|
|
making it a little larger will result in the exponent
|
|
decreasing by one and normalisation of the mantissa. */
|
|
if ((hx & 0x000fffffffffffffLL) == 0
|
|
&& ((lx != 0 && (hx ^ lx) < 0)
|
|
|| (lx == 0 && hx < 0)))
|
|
ihx -= 1LL << 52;
|
|
if (ihx < (106LL << 52)) { /* ulp will denormal */
|
|
INSERT_WORDS64 (yhi, ihx & (0x7ffLL<<52));
|
|
u = yhi * 0x1p-105;
|
|
} else {
|
|
INSERT_WORDS64 (yhi, (ihx & (0x7ffLL<<52))-(105LL<<52));
|
|
u = yhi;
|
|
}
|
|
return x + u;
|
|
}
|
|
}
|
|
strong_alias (__nextafterl, __nexttowardl)
|
|
long_double_symbol (libm, __nextafterl, nextafterl);
|
|
long_double_symbol (libm, __nexttowardl, nexttowardl);
|