mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-23 13:30:06 +00:00
1e2bffd05c
Continuing the move of libm aliases to common macros that can create _FloatN / _FloatNx aliases in future, this patch converts some dbl-64 functions to using libm_alias_double, thereby eliminating the need for some ldbl-opt wrappers. This patch deliberately limits what functions are converted so that it can be verified by comparison of stipped binaries. Specifically, atan and tan are excluded because they first need converting to being weak aliases; fma is omitted as it has additional complications with versions in other directories (removing the ldbl-opt version can e.g. cause the ldbl-128 version to be used instead of dbl-64); and functions that have both dbl-64/wordsize-64 and ldbl-opt versions are excluded because ldbl-opt currently always wraps dbl-64 function versions, so changing those will result in platforms using both ldbl-opt and dbl-64/wordsize-64 (i.e. alpha) starting to use the dbl-64/wordsize-64 versions of those functions (which is good, as an optimization, but still best separated from the present patch to get better validation). Tested for x86_64, and tested with build-many-glibcs.py that installed stripped shared libraries are unchanged by the patch. * sysdeps/ieee754/dbl-64/s_asinh.c: Include <libm-alias-double.h>. (asinh): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_cbrt.c: Include <libm-alias-double.h>. (cbrt): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_copysign.c: Include <libm-alias-double.h>. (copysign): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_erf.c: Include <libm-alias-double.h>. (erf): Define using libm_alias_double. (erfc): Likewise. * sysdeps/ieee754/dbl-64/s_expm1.c: Include <libm-alias-double.h>. (expm1): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_fabs.c: Include <libm-alias-double.h>. (fabs): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_fromfp.c (fromfp): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_fromfp_main.c: Include <libm-alias-double.h>. * sysdeps/ieee754/dbl-64/s_fromfpx.c (fromfpx): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_getpayload.c: Include <libm-alias-double.h>. (getpayload): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_llrint.c: Include <libm-alias-double.h>. (llrint): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_lrint.c: Include <libm-alias-double.h>. (lrint): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_nextup.c: Include <libm-alias-double.h>. (nextup): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_roundeven.c: Include <libm-alias-double.h>. (roundeven): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_setpayload.c (setpayload): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_setpayload_main.c: Include <libm-alias-double.h>. * sysdeps/ieee754/dbl-64/s_setpayloadsig.c (setpayloadsig): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_sin.c: Include <libm-alias-double.h>. (cos): Define using libm_alias_double. (sin): Likewise. * sysdeps/ieee754/dbl-64/s_sincos.c: Include <libm-alias-double.h>. (sincos): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_tanh.c: Include <libm-alias-double.h>. (tanh): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_totalorder.c: Include <libm-alias-double.h>. (totalorder): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_totalordermag.c: Include <libm-alias-double.h>. (totalordermag): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_ufromfp.c (ufromfp): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_ufromfpx.c (ufromfpx): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/wordsize-64/s_getpayload.c: Include <libm-alias-double.h>. (getpayload): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/wordsize-64/s_roundeven.c: Include <libm-alias-double.h>. (roundeven): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/wordsize-64/s_setpayload_main.c: Include <libm-alias-double.h>. * sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include <libm-alias-double.h>. (totalorder): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include <libm-alias-double.h>. (totalordermag): Define using libm_alias_double. * sysdeps/ieee754/ldbl-opt/s_copysign.c (copysignl): Only define libc compat symbol here. * sysdeps/ieee754/ldbl-opt/s_asinh.c: Remove file. * sysdeps/ieee754/ldbl-opt/s_cbrt.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_erf.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_expm1.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_fabs.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_llrint.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_lrint.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_sin.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_sincos.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_tanh.c: Likewise.
422 lines
14 KiB
C
422 lines
14 KiB
C
/* @(#)s_erf.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
|
for performance improvement on pipelined processors.
|
|
*/
|
|
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
|
static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
|
|
#endif
|
|
|
|
/* double erf(double x)
|
|
* double erfc(double x)
|
|
* x
|
|
* 2 |\
|
|
* erf(x) = --------- | exp(-t*t)dt
|
|
* sqrt(pi) \|
|
|
* 0
|
|
*
|
|
* erfc(x) = 1-erf(x)
|
|
* Note that
|
|
* erf(-x) = -erf(x)
|
|
* erfc(-x) = 2 - erfc(x)
|
|
*
|
|
* Method:
|
|
* 1. For |x| in [0, 0.84375]
|
|
* erf(x) = x + x*R(x^2)
|
|
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
|
|
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
|
|
* where R = P/Q where P is an odd poly of degree 8 and
|
|
* Q is an odd poly of degree 10.
|
|
* -57.90
|
|
* | R - (erf(x)-x)/x | <= 2
|
|
*
|
|
*
|
|
* Remark. The formula is derived by noting
|
|
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
|
|
* and that
|
|
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
|
* is close to one. The interval is chosen because the fix
|
|
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
|
* near 0.6174), and by some experiment, 0.84375 is chosen to
|
|
* guarantee the error is less than one ulp for erf.
|
|
*
|
|
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
|
|
* c = 0.84506291151 rounded to single (24 bits)
|
|
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
|
|
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
|
|
* 1+(c+P1(s)/Q1(s)) if x < 0
|
|
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
|
|
* Remark: here we use the taylor series expansion at x=1.
|
|
* erf(1+s) = erf(1) + s*Poly(s)
|
|
* = 0.845.. + P1(s)/Q1(s)
|
|
* That is, we use rational approximation to approximate
|
|
* erf(1+s) - (c = (single)0.84506291151)
|
|
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
|
* where
|
|
* P1(s) = degree 6 poly in s
|
|
* Q1(s) = degree 6 poly in s
|
|
*
|
|
* 3. For x in [1.25,1/0.35(~2.857143)],
|
|
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
|
|
* erf(x) = 1 - erfc(x)
|
|
* where
|
|
* R1(z) = degree 7 poly in z, (z=1/x^2)
|
|
* S1(z) = degree 8 poly in z
|
|
*
|
|
* 4. For x in [1/0.35,28]
|
|
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
|
|
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
|
|
* = 2.0 - tiny (if x <= -6)
|
|
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
|
|
* erf(x) = sign(x)*(1.0 - tiny)
|
|
* where
|
|
* R2(z) = degree 6 poly in z, (z=1/x^2)
|
|
* S2(z) = degree 7 poly in z
|
|
*
|
|
* Note1:
|
|
* To compute exp(-x*x-0.5625+R/S), let s be a single
|
|
* precision number and s := x; then
|
|
* -x*x = -s*s + (s-x)*(s+x)
|
|
* exp(-x*x-0.5626+R/S) =
|
|
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
|
|
* Note2:
|
|
* Here 4 and 5 make use of the asymptotic series
|
|
* exp(-x*x)
|
|
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
|
|
* x*sqrt(pi)
|
|
* We use rational approximation to approximate
|
|
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
|
|
* Here is the error bound for R1/S1 and R2/S2
|
|
* |R1/S1 - f(x)| < 2**(-62.57)
|
|
* |R2/S2 - f(x)| < 2**(-61.52)
|
|
*
|
|
* 5. For inf > x >= 28
|
|
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
|
|
* erfc(x) = tiny*tiny (raise underflow) if x > 0
|
|
* = 2 - tiny if x<0
|
|
*
|
|
* 7. Special case:
|
|
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
|
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
|
* erfc/erf(NaN) is NaN
|
|
*/
|
|
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <libm-alias-double.h>
|
|
#include <fix-int-fp-convert-zero.h>
|
|
|
|
static const double
|
|
tiny = 1e-300,
|
|
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
|
/* c = (float)0.84506291151 */
|
|
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
|
|
/*
|
|
* Coefficients for approximation to erf on [0,0.84375]
|
|
*/
|
|
efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
|
|
pp[] = { 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
|
|
-3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
|
|
-2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
|
|
-5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
|
|
-2.37630166566501626084e-05 }, /* 0xBEF8EAD6, 0x120016AC */
|
|
qq[] = { 0.0, 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
|
|
6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
|
|
5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
|
|
1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
|
|
-3.96022827877536812320e-06 }, /* 0xBED09C43, 0x42A26120 */
|
|
/*
|
|
* Coefficients for approximation to erf in [0.84375,1.25]
|
|
*/
|
|
pa[] = { -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
|
|
4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
|
|
-3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
|
|
3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
|
|
-1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
|
|
3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
|
|
-2.16637559486879084300e-03 }, /* 0xBF61BF38, 0x0A96073F */
|
|
qa[] = { 0.0, 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
|
|
5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
|
|
7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
|
|
1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
|
|
1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
|
|
1.19844998467991074170e-02 }, /* 0x3F888B54, 0x5735151D */
|
|
/*
|
|
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
|
*/
|
|
ra[] = { -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
|
|
-6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
|
|
-1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
|
|
-6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
|
|
-1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
|
|
-1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
|
|
-8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
|
|
-9.81432934416914548592e+00 }, /* 0xC023A0EF, 0xC69AC25C */
|
|
sa[] = { 0.0, 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
|
|
1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
|
|
4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
|
|
6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
|
|
4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
|
|
1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
|
|
6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
|
|
-6.04244152148580987438e-02 }, /* 0xBFAEEFF2, 0xEE749A62 */
|
|
/*
|
|
* Coefficients for approximation to erfc in [1/.35,28]
|
|
*/
|
|
rb[] = { -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
|
|
-7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
|
|
-1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
|
|
-1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
|
|
-6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
|
|
-1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
|
|
-4.83519191608651397019e+02 }, /* 0xC07E384E, 0x9BDC383F */
|
|
sb[] = { 0.0, 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
|
|
3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
|
|
1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
|
|
3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
|
|
2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
|
|
4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
|
|
-2.24409524465858183362e+01 }; /* 0xC03670E2, 0x42712D62 */
|
|
|
|
double
|
|
__erf (double x)
|
|
{
|
|
int32_t hx, ix, i;
|
|
double R, S, P, Q, s, y, z, r;
|
|
GET_HIGH_WORD (hx, x);
|
|
ix = hx & 0x7fffffff;
|
|
if (ix >= 0x7ff00000) /* erf(nan)=nan */
|
|
{
|
|
i = ((uint32_t) hx >> 31) << 1;
|
|
return (double) (1 - i) + one / x; /* erf(+-inf)=+-1 */
|
|
}
|
|
|
|
if (ix < 0x3feb0000) /* |x|<0.84375 */
|
|
{
|
|
double r1, r2, s1, s2, s3, z2, z4;
|
|
if (ix < 0x3e300000) /* |x|<2**-28 */
|
|
{
|
|
if (ix < 0x00800000)
|
|
{
|
|
/* Avoid spurious underflow. */
|
|
double ret = 0.0625 * (16.0 * x + (16.0 * efx) * x);
|
|
math_check_force_underflow (ret);
|
|
return ret;
|
|
}
|
|
return x + efx * x;
|
|
}
|
|
z = x * x;
|
|
r1 = pp[0] + z * pp[1]; z2 = z * z;
|
|
r2 = pp[2] + z * pp[3]; z4 = z2 * z2;
|
|
s1 = one + z * qq[1];
|
|
s2 = qq[2] + z * qq[3];
|
|
s3 = qq[4] + z * qq[5];
|
|
r = r1 + z2 * r2 + z4 * pp[4];
|
|
s = s1 + z2 * s2 + z4 * s3;
|
|
y = r / s;
|
|
return x + x * y;
|
|
}
|
|
if (ix < 0x3ff40000) /* 0.84375 <= |x| < 1.25 */
|
|
{
|
|
double s2, s4, s6, P1, P2, P3, P4, Q1, Q2, Q3, Q4;
|
|
s = fabs (x) - one;
|
|
P1 = pa[0] + s * pa[1]; s2 = s * s;
|
|
Q1 = one + s * qa[1]; s4 = s2 * s2;
|
|
P2 = pa[2] + s * pa[3]; s6 = s4 * s2;
|
|
Q2 = qa[2] + s * qa[3];
|
|
P3 = pa[4] + s * pa[5];
|
|
Q3 = qa[4] + s * qa[5];
|
|
P4 = pa[6];
|
|
Q4 = qa[6];
|
|
P = P1 + s2 * P2 + s4 * P3 + s6 * P4;
|
|
Q = Q1 + s2 * Q2 + s4 * Q3 + s6 * Q4;
|
|
if (hx >= 0)
|
|
return erx + P / Q;
|
|
else
|
|
return -erx - P / Q;
|
|
}
|
|
if (ix >= 0x40180000) /* inf>|x|>=6 */
|
|
{
|
|
if (hx >= 0)
|
|
return one - tiny;
|
|
else
|
|
return tiny - one;
|
|
}
|
|
x = fabs (x);
|
|
s = one / (x * x);
|
|
if (ix < 0x4006DB6E) /* |x| < 1/0.35 */
|
|
{
|
|
double R1, R2, R3, R4, S1, S2, S3, S4, s2, s4, s6, s8;
|
|
R1 = ra[0] + s * ra[1]; s2 = s * s;
|
|
S1 = one + s * sa[1]; s4 = s2 * s2;
|
|
R2 = ra[2] + s * ra[3]; s6 = s4 * s2;
|
|
S2 = sa[2] + s * sa[3]; s8 = s4 * s4;
|
|
R3 = ra[4] + s * ra[5];
|
|
S3 = sa[4] + s * sa[5];
|
|
R4 = ra[6] + s * ra[7];
|
|
S4 = sa[6] + s * sa[7];
|
|
R = R1 + s2 * R2 + s4 * R3 + s6 * R4;
|
|
S = S1 + s2 * S2 + s4 * S3 + s6 * S4 + s8 * sa[8];
|
|
}
|
|
else /* |x| >= 1/0.35 */
|
|
{
|
|
double R1, R2, R3, S1, S2, S3, S4, s2, s4, s6;
|
|
R1 = rb[0] + s * rb[1]; s2 = s * s;
|
|
S1 = one + s * sb[1]; s4 = s2 * s2;
|
|
R2 = rb[2] + s * rb[3]; s6 = s4 * s2;
|
|
S2 = sb[2] + s * sb[3];
|
|
R3 = rb[4] + s * rb[5];
|
|
S3 = sb[4] + s * sb[5];
|
|
S4 = sb[6] + s * sb[7];
|
|
R = R1 + s2 * R2 + s4 * R3 + s6 * rb[6];
|
|
S = S1 + s2 * S2 + s4 * S3 + s6 * S4;
|
|
}
|
|
z = x;
|
|
SET_LOW_WORD (z, 0);
|
|
r = __ieee754_exp (-z * z - 0.5625) *
|
|
__ieee754_exp ((z - x) * (z + x) + R / S);
|
|
if (hx >= 0)
|
|
return one - r / x;
|
|
else
|
|
return r / x - one;
|
|
}
|
|
libm_alias_double (__erf, erf)
|
|
|
|
double
|
|
__erfc (double x)
|
|
{
|
|
int32_t hx, ix;
|
|
double R, S, P, Q, s, y, z, r;
|
|
GET_HIGH_WORD (hx, x);
|
|
ix = hx & 0x7fffffff;
|
|
if (ix >= 0x7ff00000) /* erfc(nan)=nan */
|
|
{ /* erfc(+-inf)=0,2 */
|
|
double ret = (double) (((uint32_t) hx >> 31) << 1) + one / x;
|
|
if (FIX_INT_FP_CONVERT_ZERO && ret == 0.0)
|
|
return 0.0;
|
|
return ret;
|
|
}
|
|
|
|
if (ix < 0x3feb0000) /* |x|<0.84375 */
|
|
{
|
|
double r1, r2, s1, s2, s3, z2, z4;
|
|
if (ix < 0x3c700000) /* |x|<2**-56 */
|
|
return one - x;
|
|
z = x * x;
|
|
r1 = pp[0] + z * pp[1]; z2 = z * z;
|
|
r2 = pp[2] + z * pp[3]; z4 = z2 * z2;
|
|
s1 = one + z * qq[1];
|
|
s2 = qq[2] + z * qq[3];
|
|
s3 = qq[4] + z * qq[5];
|
|
r = r1 + z2 * r2 + z4 * pp[4];
|
|
s = s1 + z2 * s2 + z4 * s3;
|
|
y = r / s;
|
|
if (hx < 0x3fd00000) /* x<1/4 */
|
|
{
|
|
return one - (x + x * y);
|
|
}
|
|
else
|
|
{
|
|
r = x * y;
|
|
r += (x - half);
|
|
return half - r;
|
|
}
|
|
}
|
|
if (ix < 0x3ff40000) /* 0.84375 <= |x| < 1.25 */
|
|
{
|
|
double s2, s4, s6, P1, P2, P3, P4, Q1, Q2, Q3, Q4;
|
|
s = fabs (x) - one;
|
|
P1 = pa[0] + s * pa[1]; s2 = s * s;
|
|
Q1 = one + s * qa[1]; s4 = s2 * s2;
|
|
P2 = pa[2] + s * pa[3]; s6 = s4 * s2;
|
|
Q2 = qa[2] + s * qa[3];
|
|
P3 = pa[4] + s * pa[5];
|
|
Q3 = qa[4] + s * qa[5];
|
|
P4 = pa[6];
|
|
Q4 = qa[6];
|
|
P = P1 + s2 * P2 + s4 * P3 + s6 * P4;
|
|
Q = Q1 + s2 * Q2 + s4 * Q3 + s6 * Q4;
|
|
if (hx >= 0)
|
|
{
|
|
z = one - erx; return z - P / Q;
|
|
}
|
|
else
|
|
{
|
|
z = erx + P / Q; return one + z;
|
|
}
|
|
}
|
|
if (ix < 0x403c0000) /* |x|<28 */
|
|
{
|
|
x = fabs (x);
|
|
s = one / (x * x);
|
|
if (ix < 0x4006DB6D) /* |x| < 1/.35 ~ 2.857143*/
|
|
{
|
|
double R1, R2, R3, R4, S1, S2, S3, S4, s2, s4, s6, s8;
|
|
R1 = ra[0] + s * ra[1]; s2 = s * s;
|
|
S1 = one + s * sa[1]; s4 = s2 * s2;
|
|
R2 = ra[2] + s * ra[3]; s6 = s4 * s2;
|
|
S2 = sa[2] + s * sa[3]; s8 = s4 * s4;
|
|
R3 = ra[4] + s * ra[5];
|
|
S3 = sa[4] + s * sa[5];
|
|
R4 = ra[6] + s * ra[7];
|
|
S4 = sa[6] + s * sa[7];
|
|
R = R1 + s2 * R2 + s4 * R3 + s6 * R4;
|
|
S = S1 + s2 * S2 + s4 * S3 + s6 * S4 + s8 * sa[8];
|
|
}
|
|
else /* |x| >= 1/.35 ~ 2.857143 */
|
|
{
|
|
double R1, R2, R3, S1, S2, S3, S4, s2, s4, s6;
|
|
if (hx < 0 && ix >= 0x40180000)
|
|
return two - tiny; /* x < -6 */
|
|
R1 = rb[0] + s * rb[1]; s2 = s * s;
|
|
S1 = one + s * sb[1]; s4 = s2 * s2;
|
|
R2 = rb[2] + s * rb[3]; s6 = s4 * s2;
|
|
S2 = sb[2] + s * sb[3];
|
|
R3 = rb[4] + s * rb[5];
|
|
S3 = sb[4] + s * sb[5];
|
|
S4 = sb[6] + s * sb[7];
|
|
R = R1 + s2 * R2 + s4 * R3 + s6 * rb[6];
|
|
S = S1 + s2 * S2 + s4 * S3 + s6 * S4;
|
|
}
|
|
z = x;
|
|
SET_LOW_WORD (z, 0);
|
|
r = __ieee754_exp (-z * z - 0.5625) *
|
|
__ieee754_exp ((z - x) * (z + x) + R / S);
|
|
if (hx > 0)
|
|
{
|
|
double ret = math_narrow_eval (r / x);
|
|
if (ret == 0)
|
|
__set_errno (ERANGE);
|
|
return ret;
|
|
}
|
|
else
|
|
return two - r / x;
|
|
}
|
|
else
|
|
{
|
|
if (hx > 0)
|
|
{
|
|
__set_errno (ERANGE);
|
|
return tiny * tiny;
|
|
}
|
|
else
|
|
return two - tiny;
|
|
}
|
|
}
|
|
libm_alias_double (__erfc, erfc)
|