glibc/sysdeps/ieee754/ldbl-128ibm/e_hypotl.c
Joseph Myers 58307649fb Fix hypot sNaN handling (bug 20940).
TS 18661-1 generally defines libm functions taking sNaN arguments to
return qNaN and raise "invalid", even for the cases where a
corresponding qNaN argument would not result in a qNaN return.  This
includes hypot with one argument being an infinity and the other being
an sNaN.  This patch duly fixes hypot implementatations in glibc
(generic and powerpc) to ensure qNaN, computed by arithmetic on the
arguments, is returned in that case.

Various implementations do their checks for infinities and NaNs inline
by manipulating the representations of the arguments.  For simplicity,
this patch just uses issignaling to check for sNaN arguments.  This
could be inlined like the existing code (with due care about reversed
quiet NaN conventions, for implementations where that is relevant),
but given that all these checks are in cases where it's already known
at least one argument is not finite, which should be the uncommon
case, that doesn't seem worthwhile unless performance issues are
observed in practice.

Tested for x86_64, x86, mips64 and powerpc.

	[BZ #20940]
	* sysdeps/ieee754/dbl-64/e_hypot.c (__ieee754_hypot): Do not
	return Inf for arguments Inf and sNaN.
	* sysdeps/ieee754/flt-32/e_hypotf.c (__ieee754_hypotf): Likewise.
	* sysdeps/ieee754/ldbl-128/e_hypotl.c (__ieee754_hypotl):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_hypotl.c (__ieee754_hypotl):
	Likewise.
	* sysdeps/ieee754/ldbl-96/e_hypotl.c (__ieee754_hypotl): Likewise.
	* sysdeps/powerpc/fpu/e_hypot.c (TEST_INF_NAN): Do not return Inf
	for arguments Inf and sNaN.  When returning a NaN, compute it by
	arithmetic on the arguments.
	* sysdeps/powerpc/fpu/e_hypotf.c (TEST_INF_NAN): Likewise.
	* math/libm-test.inc (pow_test_data): Add tests of sNaN arguments.
2016-12-07 01:16:36 +00:00

139 lines
3.6 KiB
C

/* @(#)e_hypotl.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_hypotl(x,y)
*
* Method :
* If (assume round-to-nearest) z=x*x+y*y
* has error less than sqrtl(2)/2 ulp, than
* sqrtl(z) has error less than 1 ulp (exercise).
*
* So, compute sqrtl(x*x+y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x>y>0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
* where x1 = x with lower 53 bits cleared, x2 = x-x1; else
* 2. if x <= 2y use
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
* where t1 = 2x with lower 53 bits cleared, t2 = 2x-t1,
* y1= y with lower 53 bits chopped, y2 = y-y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypotl(x,y) is INF if x or y is +INF or -INF; else
* hypotl(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypotl(x,y) returns sqrtl(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include <math.h>
#include <math_private.h>
long double
__ieee754_hypotl(long double x, long double y)
{
long double a,b,a1,a2,b1,b2,w,kld;
int64_t j,k,ha,hb;
double xhi, yhi, hi, lo;
xhi = ldbl_high (x);
EXTRACT_WORDS64 (ha, xhi);
yhi = ldbl_high (y);
EXTRACT_WORDS64 (hb, yhi);
ha &= 0x7fffffffffffffffLL;
hb &= 0x7fffffffffffffffLL;
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
a = fabsl(a); /* a <- |a| */
b = fabsl(b); /* b <- |b| */
if((ha-hb)>0x0780000000000000LL) {return a+b;} /* x/y > 2**120 */
k=0;
kld = 1.0L;
if(ha > 0x5f30000000000000LL) { /* a>2**500 */
if(ha >= 0x7ff0000000000000LL) { /* Inf or NaN */
w = a+b; /* for sNaN */
if (issignaling (a) || issignaling (b))
return w;
if(ha == 0x7ff0000000000000LL)
w = a;
if(hb == 0x7ff0000000000000LL)
w = b;
return w;
}
/* scale a and b by 2**-600 */
a *= 0x1p-600L;
b *= 0x1p-600L;
k = 600;
kld = 0x1p+600L;
}
else if(hb < 0x23d0000000000000LL) { /* b < 2**-450 */
if(hb <= 0x000fffffffffffffLL) { /* subnormal b or 0 */
if(hb==0) return a;
a *= 0x1p+1022L;
b *= 0x1p+1022L;
k = -1022;
kld = 0x1p-1022L;
} else { /* scale a and b by 2^600 */
a *= 0x1p+600L;
b *= 0x1p+600L;
k = -600;
kld = 0x1p-600L;
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
ldbl_unpack (a, &hi, &lo);
a1 = hi;
a2 = lo;
/* a*a + b*b
= (a1+a2)*a + b*b
= a1*a + a2*a + b*b
= a1*(a1+a2) + a2*a + b*b
= a1*a1 + a1*a2 + a2*a + b*b
= a1*a1 + a2*(a+a1) + b*b */
w = __ieee754_sqrtl(a1*a1-(b*(-b)-a2*(a+a1)));
} else {
a = a+a;
ldbl_unpack (b, &hi, &lo);
b1 = hi;
b2 = lo;
ldbl_unpack (a, &hi, &lo);
a1 = hi;
a2 = lo;
/* a*a + b*b
= a*a + (a-b)*(a-b) - (a-b)*(a-b) + b*b
= a*a + w*w - (a*a - 2*a*b + b*b) + b*b
= w*w + 2*a*b
= w*w + (a1+a2)*b
= w*w + a1*b + a2*b
= w*w + a1*(b1+b2) + a2*b
= w*w + a1*b1 + a1*b2 + a2*b */
w = __ieee754_sqrtl(a1*b1-(w*(-w)-(a1*b2+a2*b)));
}
if(k!=0)
{
w *= kld;
math_check_force_underflow_nonneg (w);
return w;
}
else
return w;
}
strong_alias (__ieee754_hypotl, __hypotl_finite)