mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-06 01:21:08 +00:00
440169d681
The ldbl-128ibm implementation of acoshl uses a cut-off of 0x1p28 to determine when to use log(x) + log(2) as a formula. That cut-off is too small for this format, resulting in large errors. This patch changes it to a more appropriate cut-off of 0x1p56, adding tests around the cut-offs for various floating-point formats. Tested for powerpc. Also tested for x86_64 and x86 and updated ulps. [BZ #18019] * sysdeps/ieee754/ldbl-128ibm/e_acoshl.c (__ieee754_acoshl): Use 2**56 not 2**28 as threshold for log (2x) formula. * math/auto-libm-test-in: Add more tests of acosh. * math/auto-libm-test-out: Regenerated. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
63 lines
1.7 KiB
C
63 lines
1.7 KiB
C
/* @(#)e_acosh.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* __ieee754_acosh(x)
|
|
* Method :
|
|
* Based on
|
|
* acosh(x) = log [ x + sqrt(x*x-1) ]
|
|
* we have
|
|
* acosh(x) := log(x)+ln2, if x is large; else
|
|
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
|
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
|
*
|
|
* Special cases:
|
|
* acosh(x) is NaN with signal if x<1.
|
|
* acosh(NaN) is NaN without signal.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static const long double
|
|
one = 1.0L,
|
|
ln2 = M_LN2l;
|
|
|
|
long double
|
|
__ieee754_acoshl(long double x)
|
|
{
|
|
long double t;
|
|
int64_t hx;
|
|
uint64_t lx;
|
|
double xhi, xlo;
|
|
|
|
ldbl_unpack (x, &xhi, &xlo);
|
|
EXTRACT_WORDS64 (hx, xhi);
|
|
EXTRACT_WORDS64 (lx, xlo);
|
|
if(hx<0x3ff0000000000000LL) { /* x < 1 */
|
|
return (x-x)/(x-x);
|
|
} else if(hx >=0x4370000000000000LL) { /* x >= 2**56 */
|
|
if(hx >=0x7ff0000000000000LL) { /* x is inf of NaN */
|
|
return x+x;
|
|
} else
|
|
return __ieee754_logl(x)+ln2; /* acosh(huge)=log(2x) */
|
|
} else if (((hx-0x3ff0000000000000LL)|(lx&0x7fffffffffffffffLL))==0) {
|
|
return 0.0; /* acosh(1) = 0 */
|
|
} else if (hx > 0x4000000000000000LL) { /* 2**56 > x > 2 */
|
|
t=x*x;
|
|
return __ieee754_logl(2.0*x-one/(x+__ieee754_sqrtl(t-one)));
|
|
} else { /* 1<x<2 */
|
|
t = x-one;
|
|
return __log1pl(t+__ieee754_sqrtl(2.0*t+t*t));
|
|
}
|
|
}
|
|
strong_alias (__ieee754_acoshl, __acoshl_finite)
|