mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-15 13:30:09 +00:00
860 lines
29 KiB
C
860 lines
29 KiB
C
/* Machine-dependent ELF dynamic relocation inline functions.
|
|
PowerPC64 version.
|
|
Copyright 1995-2005, 2006, 2008, 2010, 2011 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If
|
|
not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef dl_machine_h
|
|
#define dl_machine_h
|
|
|
|
#define ELF_MACHINE_NAME "powerpc64"
|
|
|
|
#include <assert.h>
|
|
#include <sys/param.h>
|
|
#include <dl-tls.h>
|
|
#include <sysdep.h>
|
|
|
|
/* Translate a processor specific dynamic tag to the index
|
|
in l_info array. */
|
|
#define DT_PPC64(x) (DT_PPC64_##x - DT_LOPROC + DT_NUM)
|
|
|
|
/* A PowerPC64 function descriptor. The .plt (procedure linkage
|
|
table) and .opd (official procedure descriptor) sections are
|
|
arrays of these. */
|
|
typedef struct
|
|
{
|
|
Elf64_Addr fd_func;
|
|
Elf64_Addr fd_toc;
|
|
Elf64_Addr fd_aux;
|
|
} Elf64_FuncDesc;
|
|
|
|
#define ELF_MULT_MACHINES_SUPPORTED
|
|
|
|
/* Return nonzero iff ELF header is compatible with the running host. */
|
|
static inline int
|
|
elf_machine_matches_host (const Elf64_Ehdr *ehdr)
|
|
{
|
|
return ehdr->e_machine == EM_PPC64;
|
|
}
|
|
|
|
/* Return nonzero iff ELF header is compatible with the running host,
|
|
but not this loader. */
|
|
static inline int
|
|
elf_host_tolerates_machine (const Elf64_Ehdr *ehdr)
|
|
{
|
|
return ehdr->e_machine == EM_PPC;
|
|
}
|
|
|
|
/* Return nonzero iff ELF header is compatible with the running host,
|
|
but not this loader. */
|
|
static inline int
|
|
elf_host_tolerates_class (const Elf64_Ehdr *ehdr)
|
|
{
|
|
return ehdr->e_ident[EI_CLASS] == ELFCLASS32;
|
|
}
|
|
|
|
|
|
/* Return the run-time load address of the shared object, assuming it
|
|
was originally linked at zero. */
|
|
static inline Elf64_Addr
|
|
elf_machine_load_address (void) __attribute__ ((const));
|
|
|
|
static inline Elf64_Addr
|
|
elf_machine_load_address (void)
|
|
{
|
|
Elf64_Addr ret;
|
|
|
|
/* The first entry in .got (and thus the first entry in .toc) is the
|
|
link-time TOC_base, ie. r2. So the difference between that and
|
|
the current r2 set by the kernel is how far the shared lib has
|
|
moved. */
|
|
asm ( " ld %0,-32768(2)\n"
|
|
" subf %0,%0,2\n"
|
|
: "=r" (ret));
|
|
return ret;
|
|
}
|
|
|
|
/* Return the link-time address of _DYNAMIC. */
|
|
static inline Elf64_Addr
|
|
elf_machine_dynamic (void)
|
|
{
|
|
Elf64_Addr runtime_dynamic;
|
|
/* It's easier to get the run-time address. */
|
|
asm ( " addis %0,2,_DYNAMIC@toc@ha\n"
|
|
" addi %0,%0,_DYNAMIC@toc@l\n"
|
|
: "=b" (runtime_dynamic));
|
|
/* Then subtract off the load address offset. */
|
|
return runtime_dynamic - elf_machine_load_address() ;
|
|
}
|
|
|
|
#define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) /* nothing */
|
|
|
|
/* The PLT uses Elf64_Rela relocs. */
|
|
#define elf_machine_relplt elf_machine_rela
|
|
|
|
|
|
#ifdef HAVE_INLINED_SYSCALLS
|
|
/* We do not need _dl_starting_up. */
|
|
# define DL_STARTING_UP_DEF
|
|
#else
|
|
# define DL_STARTING_UP_DEF \
|
|
".LC__dl_starting_up:\n" \
|
|
" .tc _dl_starting_up_internal[TC],_dl_starting_up_internal\n"
|
|
#endif
|
|
|
|
|
|
/* Initial entry point code for the dynamic linker. The C function
|
|
`_dl_start' is the real entry point; its return value is the user
|
|
program's entry point. */
|
|
#define RTLD_START \
|
|
asm (".pushsection \".text\"\n" \
|
|
" .align 2\n" \
|
|
" .type " BODY_PREFIX "_start,@function\n" \
|
|
" .pushsection \".opd\",\"aw\"\n" \
|
|
" .align 3\n" \
|
|
" .globl _start\n" \
|
|
" " ENTRY_2(_start) "\n" \
|
|
"_start:\n" \
|
|
" " OPD_ENT(_start) "\n" \
|
|
" .popsection\n" \
|
|
BODY_PREFIX "_start:\n" \
|
|
/* We start with the following on the stack, from top: \
|
|
argc (4 bytes); \
|
|
arguments for program (terminated by NULL); \
|
|
environment variables (terminated by NULL); \
|
|
arguments for the program loader. */ \
|
|
" mr 3,1\n" \
|
|
" li 4,0\n" \
|
|
" stdu 4,-128(1)\n" \
|
|
/* Call _dl_start with one parameter pointing at argc. */ \
|
|
" bl " DOT_PREFIX "_dl_start\n" \
|
|
" nop\n" \
|
|
/* Transfer control to _dl_start_user! */ \
|
|
" b " DOT_PREFIX "_dl_start_user\n" \
|
|
".LT__start:\n" \
|
|
" .long 0\n" \
|
|
" .byte 0x00,0x0c,0x24,0x40,0x00,0x00,0x00,0x00\n" \
|
|
" .long .LT__start-" BODY_PREFIX "_start\n" \
|
|
" .short .LT__start_name_end-.LT__start_name_start\n" \
|
|
".LT__start_name_start:\n" \
|
|
" .ascii \"_start\"\n" \
|
|
".LT__start_name_end:\n" \
|
|
" .align 2\n" \
|
|
" " END_2(_start) "\n" \
|
|
" .globl _dl_start_user\n" \
|
|
" .pushsection \".opd\",\"aw\"\n" \
|
|
"_dl_start_user:\n" \
|
|
" " OPD_ENT(_dl_start_user) "\n" \
|
|
" .popsection\n" \
|
|
" .pushsection \".toc\",\"aw\"\n" \
|
|
DL_STARTING_UP_DEF \
|
|
".LC__rtld_global:\n" \
|
|
" .tc _rtld_global[TC],_rtld_global\n" \
|
|
".LC__dl_argc:\n" \
|
|
" .tc _dl_argc[TC],_dl_argc\n" \
|
|
".LC__dl_argv:\n" \
|
|
" .tc _dl_argv_internal[TC],_dl_argv_internal\n" \
|
|
".LC__dl_fini:\n" \
|
|
" .tc _dl_fini[TC],_dl_fini\n" \
|
|
" .popsection\n" \
|
|
" .type " BODY_PREFIX "_dl_start_user,@function\n" \
|
|
" " ENTRY_2(_dl_start_user) "\n" \
|
|
/* Now, we do our main work of calling initialisation procedures. \
|
|
The ELF ABI doesn't say anything about parameters for these, \
|
|
so we just pass argc, argv, and the environment. \
|
|
Changing these is strongly discouraged (not least because argc is \
|
|
passed by value!). */ \
|
|
BODY_PREFIX "_dl_start_user:\n" \
|
|
/* the address of _start in r30. */ \
|
|
" mr 30,3\n" \
|
|
/* &_dl_argc in 29, &_dl_argv in 27, and _dl_loaded in 28. */ \
|
|
" ld 28,.LC__rtld_global@toc(2)\n" \
|
|
" ld 29,.LC__dl_argc@toc(2)\n" \
|
|
" ld 27,.LC__dl_argv@toc(2)\n" \
|
|
/* _dl_init (_dl_loaded, _dl_argc, _dl_argv, _dl_argv+_dl_argc+1). */ \
|
|
" ld 3,0(28)\n" \
|
|
" lwa 4,0(29)\n" \
|
|
" ld 5,0(27)\n" \
|
|
" sldi 6,4,3\n" \
|
|
" add 6,5,6\n" \
|
|
" addi 6,6,8\n" \
|
|
" bl " DOT_PREFIX "_dl_init\n" \
|
|
" nop\n" \
|
|
/* Now, to conform to the ELF ABI, we have to: \
|
|
Pass argc (actually _dl_argc) in r3; */ \
|
|
" lwa 3,0(29)\n" \
|
|
/* Pass argv (actually _dl_argv) in r4; */ \
|
|
" ld 4,0(27)\n" \
|
|
/* Pass argv+argc+1 in r5; */ \
|
|
" sldi 5,3,3\n" \
|
|
" add 6,4,5\n" \
|
|
" addi 5,6,8\n" \
|
|
/* Pass the auxilary vector in r6. This is passed to us just after \
|
|
_envp. */ \
|
|
"2: ldu 0,8(6)\n" \
|
|
" cmpdi 0,0\n" \
|
|
" bne 2b\n" \
|
|
" addi 6,6,8\n" \
|
|
/* Pass a termination function pointer (in this case _dl_fini) in \
|
|
r7. */ \
|
|
" ld 7,.LC__dl_fini@toc(2)\n" \
|
|
/* Pass the stack pointer in r1 (so far so good), pointing to a NULL \
|
|
value. This lets our startup code distinguish between a program \
|
|
linked statically, which linux will call with argc on top of the \
|
|
stack which will hopefully never be zero, and a dynamically linked \
|
|
program which will always have a NULL on the top of the stack. \
|
|
Take the opportunity to clear LR, so anyone who accidentally \
|
|
returns from _start gets SEGV. Also clear the next few words of \
|
|
the stack. */ \
|
|
" li 31,0\n" \
|
|
" std 31,0(1)\n" \
|
|
" mtlr 31\n" \
|
|
" std 31,8(1)\n" \
|
|
" std 31,16(1)\n" \
|
|
" std 31,24(1)\n" \
|
|
/* Now, call the start function descriptor at r30... */ \
|
|
" .globl ._dl_main_dispatch\n" \
|
|
"._dl_main_dispatch:\n" \
|
|
" ld 0,0(30)\n" \
|
|
" ld 2,8(30)\n" \
|
|
" mtctr 0\n" \
|
|
" ld 11,16(30)\n" \
|
|
" bctr\n" \
|
|
".LT__dl_start_user:\n" \
|
|
" .long 0\n" \
|
|
" .byte 0x00,0x0c,0x24,0x40,0x00,0x00,0x00,0x00\n" \
|
|
" .long .LT__dl_start_user-" BODY_PREFIX "_dl_start_user\n" \
|
|
" .short .LT__dl_start_user_name_end-.LT__dl_start_user_name_start\n" \
|
|
".LT__dl_start_user_name_start:\n" \
|
|
" .ascii \"_dl_start_user\"\n" \
|
|
".LT__dl_start_user_name_end:\n" \
|
|
" .align 2\n" \
|
|
" " END_2(_dl_start_user) "\n" \
|
|
" .popsection");
|
|
|
|
/* ELF_RTYPE_CLASS_NOCOPY iff TYPE should not be allowed to resolve to
|
|
one of the main executable's symbols, as for a COPY reloc.
|
|
|
|
To make function pointer comparisons work on most targets, the
|
|
relevant ABI states that the address of a non-local function in a
|
|
dynamically linked executable is the address of the PLT entry for
|
|
that function. This is quite reasonable since using the real
|
|
function address in a non-PIC executable would typically require
|
|
dynamic relocations in .text, something to be avoided. For such
|
|
functions, the linker emits a SHN_UNDEF symbol in the executable
|
|
with value equal to the PLT entry address. Normally, SHN_UNDEF
|
|
symbols have a value of zero, so this is a clue to ld.so that it
|
|
should treat these symbols specially. For relocations not in
|
|
ELF_RTYPE_CLASS_PLT (eg. those on function pointers), ld.so should
|
|
use the value of the executable SHN_UNDEF symbol, ie. the PLT entry
|
|
address. For relocations in ELF_RTYPE_CLASS_PLT (eg. the relocs in
|
|
the PLT itself), ld.so should use the value of the corresponding
|
|
defined symbol in the object that defines the function, ie. the
|
|
real function address. This complicates ld.so in that there are
|
|
now two possible values for a given symbol, and it gets even worse
|
|
because protected symbols need yet another set of rules.
|
|
|
|
On PowerPC64 we don't need any of this. The linker won't emit
|
|
SHN_UNDEF symbols with non-zero values. ld.so can make all
|
|
relocations behave "normally", ie. always use the real address
|
|
like PLT relocations. So always set ELF_RTYPE_CLASS_PLT. */
|
|
|
|
#define elf_machine_type_class(type) \
|
|
(ELF_RTYPE_CLASS_PLT | (((type) == R_PPC64_COPY) * ELF_RTYPE_CLASS_COPY))
|
|
|
|
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */
|
|
#define ELF_MACHINE_JMP_SLOT R_PPC64_JMP_SLOT
|
|
|
|
/* The PowerPC never uses REL relocations. */
|
|
#define ELF_MACHINE_NO_REL 1
|
|
|
|
/* Stuff for the PLT. */
|
|
#define PLT_INITIAL_ENTRY_WORDS 3
|
|
#define GLINK_INITIAL_ENTRY_WORDS 8
|
|
|
|
#define PPC_DCBST(where) asm volatile ("dcbst 0,%0" : : "r"(where) : "memory")
|
|
#define PPC_DCBT(where) asm volatile ("dcbt 0,%0" : : "r"(where) : "memory")
|
|
#define PPC_DCBF(where) asm volatile ("dcbf 0,%0" : : "r"(where) : "memory")
|
|
#define PPC_SYNC asm volatile ("sync" : : : "memory")
|
|
#define PPC_ISYNC asm volatile ("sync; isync" : : : "memory")
|
|
#define PPC_ICBI(where) asm volatile ("icbi 0,%0" : : "r"(where) : "memory")
|
|
#define PPC_DIE asm volatile ("tweq 0,0")
|
|
/* Use this when you've modified some code, but it won't be in the
|
|
instruction fetch queue (or when it doesn't matter if it is). */
|
|
#define MODIFIED_CODE_NOQUEUE(where) \
|
|
do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); } while (0)
|
|
/* Use this when it might be in the instruction queue. */
|
|
#define MODIFIED_CODE(where) \
|
|
do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); PPC_ISYNC; } while (0)
|
|
|
|
/* Set up the loaded object described by MAP so its unrelocated PLT
|
|
entries will jump to the on-demand fixup code in dl-runtime.c. */
|
|
static inline int __attribute__ ((always_inline))
|
|
elf_machine_runtime_setup (struct link_map *map, int lazy, int profile)
|
|
{
|
|
if (map->l_info[DT_JMPREL])
|
|
{
|
|
Elf64_Word i;
|
|
Elf64_Word *glink = NULL;
|
|
Elf64_Xword *plt = (Elf64_Xword *) D_PTR (map, l_info[DT_PLTGOT]);
|
|
Elf64_Word num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
|
|
/ sizeof (Elf64_Rela));
|
|
Elf64_Addr l_addr = map->l_addr;
|
|
Elf64_Dyn **info = map->l_info;
|
|
char *p;
|
|
|
|
extern void _dl_runtime_resolve (void);
|
|
extern void _dl_profile_resolve (void);
|
|
|
|
/* Relocate the DT_PPC64_GLINK entry in the _DYNAMIC section.
|
|
elf_get_dynamic_info takes care of the standard entries but
|
|
doesn't know exactly what to do with processor specific
|
|
entires. */
|
|
if (info[DT_PPC64(GLINK)] != NULL)
|
|
info[DT_PPC64(GLINK)]->d_un.d_ptr += l_addr;
|
|
|
|
if (lazy)
|
|
{
|
|
/* The function descriptor of the appropriate trampline
|
|
routine is used to set the 1st and 2nd doubleword of the
|
|
plt_reserve. */
|
|
Elf64_FuncDesc *resolve_fd;
|
|
Elf64_Word glink_offset;
|
|
/* the plt_reserve area is the 1st 3 doublewords of the PLT */
|
|
Elf64_FuncDesc *plt_reserve = (Elf64_FuncDesc *) plt;
|
|
Elf64_Word offset;
|
|
|
|
resolve_fd = (Elf64_FuncDesc *) (profile ? _dl_profile_resolve
|
|
: _dl_runtime_resolve);
|
|
if (profile && GLRO(dl_profile) != NULL
|
|
&& _dl_name_match_p (GLRO(dl_profile), map))
|
|
/* This is the object we are looking for. Say that we really
|
|
want profiling and the timers are started. */
|
|
GL(dl_profile_map) = map;
|
|
|
|
|
|
/* We need to stuff the address/TOC of _dl_runtime_resolve
|
|
into doublewords 0 and 1 of plt_reserve. Then we need to
|
|
stuff the map address into doubleword 2 of plt_reserve.
|
|
This allows the GLINK0 code to transfer control to the
|
|
correct trampoline which will transfer control to fixup
|
|
in dl-machine.c. */
|
|
plt_reserve->fd_func = resolve_fd->fd_func;
|
|
plt_reserve->fd_toc = resolve_fd->fd_toc;
|
|
plt_reserve->fd_aux = (Elf64_Addr) map;
|
|
#ifdef RTLD_BOOTSTRAP
|
|
/* When we're bootstrapping, the opd entry will not have
|
|
been relocated yet. */
|
|
plt_reserve->fd_func += l_addr;
|
|
plt_reserve->fd_toc += l_addr;
|
|
#endif
|
|
|
|
/* Set up the lazy PLT entries. */
|
|
glink = (Elf64_Word *) D_PTR (map, l_info[DT_PPC64(GLINK)]);
|
|
offset = PLT_INITIAL_ENTRY_WORDS;
|
|
glink_offset = GLINK_INITIAL_ENTRY_WORDS;
|
|
for (i = 0; i < num_plt_entries; i++)
|
|
{
|
|
|
|
plt[offset] = (Elf64_Xword) &glink[glink_offset];
|
|
offset += 3;
|
|
/* The first 32k entries of glink can set an index and
|
|
branch using two instructions; Past that point,
|
|
glink uses three instructions. */
|
|
if (i < 0x8000)
|
|
glink_offset += 2;
|
|
else
|
|
glink_offset += 3;
|
|
}
|
|
|
|
/* Now, we've modified data. We need to write the changes from
|
|
the data cache to a second-level unified cache, then make
|
|
sure that stale data in the instruction cache is removed.
|
|
(In a multiprocessor system, the effect is more complex.)
|
|
Most of the PLT shouldn't be in the instruction cache, but
|
|
there may be a little overlap at the start and the end.
|
|
|
|
Assumes that dcbst and icbi apply to lines of 16 bytes or
|
|
more. Current known line sizes are 16, 32, and 128 bytes. */
|
|
|
|
for (p = (char *) plt; p < (char *) &plt[offset]; p += 16)
|
|
PPC_DCBST (p);
|
|
PPC_SYNC;
|
|
}
|
|
}
|
|
return lazy;
|
|
}
|
|
|
|
/* Change the PLT entry whose reloc is 'reloc' to call the actual
|
|
routine. */
|
|
static inline Elf64_Addr __attribute__ ((always_inline))
|
|
elf_machine_fixup_plt (struct link_map *map, lookup_t sym_map,
|
|
const Elf64_Rela *reloc,
|
|
Elf64_Addr *reloc_addr, Elf64_Addr finaladdr)
|
|
{
|
|
Elf64_FuncDesc *plt = (Elf64_FuncDesc *) reloc_addr;
|
|
Elf64_FuncDesc *rel = (Elf64_FuncDesc *) finaladdr;
|
|
Elf64_Addr offset = 0;
|
|
|
|
PPC_DCBT (&plt->fd_aux);
|
|
PPC_DCBT (&plt->fd_func);
|
|
PPC_DCBT (&rel->fd_aux);
|
|
PPC_DCBT (&rel->fd_func);
|
|
|
|
/* If sym_map is NULL, it's a weak undefined sym; Leave the plt zero. */
|
|
if (sym_map == NULL)
|
|
return 0;
|
|
|
|
/* If the opd entry is not yet relocated (because it's from a shared
|
|
object that hasn't been processed yet), then manually reloc it. */
|
|
if (map != sym_map && !sym_map->l_relocated
|
|
#if !defined RTLD_BOOTSTRAP && defined SHARED
|
|
/* Bootstrap map doesn't have l_relocated set for it. */
|
|
&& sym_map != &GL(dl_rtld_map)
|
|
#endif
|
|
)
|
|
offset = sym_map->l_addr;
|
|
|
|
/* For PPC64, fixup_plt copies the function descriptor from opd
|
|
over the corresponding PLT entry.
|
|
Initially, PLT Entry[i] is set up for lazy linking, or is zero.
|
|
For lazy linking, the fd_toc and fd_aux entries are irrelevant,
|
|
so for thread safety we write them before changing fd_func. */
|
|
|
|
plt->fd_aux = rel->fd_aux + offset;
|
|
plt->fd_toc = rel->fd_toc + offset;
|
|
PPC_DCBF (&plt->fd_toc);
|
|
PPC_ISYNC;
|
|
|
|
plt->fd_func = rel->fd_func + offset;
|
|
PPC_DCBST (&plt->fd_func);
|
|
PPC_ISYNC;
|
|
|
|
return finaladdr;
|
|
}
|
|
|
|
static inline void __attribute__ ((always_inline))
|
|
elf_machine_plt_conflict (Elf64_Addr *reloc_addr, Elf64_Addr finaladdr)
|
|
{
|
|
Elf64_FuncDesc *plt = (Elf64_FuncDesc *) reloc_addr;
|
|
Elf64_FuncDesc *rel = (Elf64_FuncDesc *) finaladdr;
|
|
|
|
plt->fd_func = rel->fd_func;
|
|
plt->fd_aux = rel->fd_aux;
|
|
plt->fd_toc = rel->fd_toc;
|
|
PPC_DCBST (&plt->fd_func);
|
|
PPC_DCBST (&plt->fd_aux);
|
|
PPC_DCBST (&plt->fd_toc);
|
|
PPC_SYNC;
|
|
}
|
|
|
|
/* Return the final value of a plt relocation. */
|
|
static inline Elf64_Addr
|
|
elf_machine_plt_value (struct link_map *map, const Elf64_Rela *reloc,
|
|
Elf64_Addr value)
|
|
{
|
|
return value + reloc->r_addend;
|
|
}
|
|
|
|
|
|
/* Names of the architecture-specific auditing callback functions. */
|
|
#define ARCH_LA_PLTENTER ppc64_gnu_pltenter
|
|
#define ARCH_LA_PLTEXIT ppc64_gnu_pltexit
|
|
|
|
#endif /* dl_machine_h */
|
|
|
|
#ifdef RESOLVE_MAP
|
|
|
|
#define PPC_LO(v) ((v) & 0xffff)
|
|
#define PPC_HI(v) (((v) >> 16) & 0xffff)
|
|
#define PPC_HA(v) PPC_HI ((v) + 0x8000)
|
|
#define PPC_HIGHER(v) (((v) >> 32) & 0xffff)
|
|
#define PPC_HIGHERA(v) PPC_HIGHER ((v) + 0x8000)
|
|
#define PPC_HIGHEST(v) (((v) >> 48) & 0xffff)
|
|
#define PPC_HIGHESTA(v) PPC_HIGHEST ((v) + 0x8000)
|
|
#define BIT_INSERT(var, val, mask) \
|
|
((var) = ((var) & ~(Elf64_Addr) (mask)) | ((val) & (mask)))
|
|
|
|
#define dont_expect(X) __builtin_expect ((X), 0)
|
|
|
|
extern void _dl_reloc_overflow (struct link_map *map,
|
|
const char *name,
|
|
Elf64_Addr *const reloc_addr,
|
|
const Elf64_Sym *refsym)
|
|
attribute_hidden;
|
|
|
|
auto inline void __attribute__ ((always_inline))
|
|
elf_machine_rela_relative (Elf64_Addr l_addr, const Elf64_Rela *reloc,
|
|
void *const reloc_addr_arg)
|
|
{
|
|
Elf64_Addr *const reloc_addr = reloc_addr_arg;
|
|
*reloc_addr = l_addr + reloc->r_addend;
|
|
}
|
|
|
|
/* This computes the value used by TPREL* relocs. */
|
|
auto inline Elf64_Addr __attribute__ ((always_inline, const))
|
|
elf_machine_tprel (struct link_map *map,
|
|
struct link_map *sym_map,
|
|
const Elf64_Sym *sym,
|
|
const Elf64_Rela *reloc)
|
|
{
|
|
#ifndef RTLD_BOOTSTRAP
|
|
if (sym_map)
|
|
{
|
|
CHECK_STATIC_TLS (map, sym_map);
|
|
#endif
|
|
return TLS_TPREL_VALUE (sym_map, sym, reloc);
|
|
#ifndef RTLD_BOOTSTRAP
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Call function at address VALUE (an OPD entry) to resolve ifunc relocs. */
|
|
auto inline Elf64_Addr __attribute__ ((always_inline))
|
|
resolve_ifunc (Elf64_Addr value,
|
|
const struct link_map *map, const struct link_map *sym_map)
|
|
{
|
|
#ifndef RESOLVE_CONFLICT_FIND_MAP
|
|
/* The function we are calling may not yet have its opd entry relocated. */
|
|
Elf64_FuncDesc opd;
|
|
if (map != sym_map
|
|
# if !defined RTLD_BOOTSTRAP && defined SHARED
|
|
/* Bootstrap map doesn't have l_relocated set for it. */
|
|
&& sym_map != &GL(dl_rtld_map)
|
|
# endif
|
|
&& !sym_map->l_relocated)
|
|
{
|
|
Elf64_FuncDesc *func = (Elf64_FuncDesc *) value;
|
|
opd.fd_func = func->fd_func + sym_map->l_addr;
|
|
opd.fd_toc = func->fd_toc + sym_map->l_addr;
|
|
opd.fd_aux = func->fd_aux;
|
|
value = (Elf64_Addr) &opd;
|
|
}
|
|
#endif
|
|
return ((Elf64_Addr (*) (void)) value) ();
|
|
}
|
|
|
|
/* Perform the relocation specified by RELOC and SYM (which is fully
|
|
resolved). MAP is the object containing the reloc. */
|
|
auto inline void __attribute__ ((always_inline))
|
|
elf_machine_rela (struct link_map *map,
|
|
const Elf64_Rela *reloc,
|
|
const Elf64_Sym *sym,
|
|
const struct r_found_version *version,
|
|
void *const reloc_addr_arg,
|
|
int skip_ifunc)
|
|
{
|
|
Elf64_Addr *const reloc_addr = reloc_addr_arg;
|
|
const int r_type = ELF64_R_TYPE (reloc->r_info);
|
|
const Elf64_Sym *const refsym = sym;
|
|
|
|
if (r_type == R_PPC64_RELATIVE)
|
|
{
|
|
*reloc_addr = map->l_addr + reloc->r_addend;
|
|
return;
|
|
}
|
|
|
|
if (__builtin_expect (r_type == R_PPC64_NONE, 0))
|
|
return;
|
|
|
|
/* We need SYM_MAP even in the absence of TLS, for elf_machine_fixup_plt
|
|
and STT_GNU_IFUNC. */
|
|
struct link_map *sym_map = RESOLVE_MAP (&sym, version, r_type);
|
|
Elf64_Addr value = ((sym_map == NULL ? 0 : sym_map->l_addr + sym->st_value)
|
|
+ reloc->r_addend);
|
|
|
|
if (sym != NULL
|
|
&& __builtin_expect (ELFW(ST_TYPE) (sym->st_info) == STT_GNU_IFUNC, 0)
|
|
&& __builtin_expect (sym->st_shndx != SHN_UNDEF, 1)
|
|
&& __builtin_expect (!skip_ifunc, 1))
|
|
value = resolve_ifunc (value, map, sym_map);
|
|
|
|
/* For relocs that don't edit code, return.
|
|
For relocs that might edit instructions, break from the switch. */
|
|
switch (r_type)
|
|
{
|
|
case R_PPC64_ADDR64:
|
|
case R_PPC64_GLOB_DAT:
|
|
*reloc_addr = value;
|
|
return;
|
|
|
|
case R_PPC64_IRELATIVE:
|
|
if (__builtin_expect (!skip_ifunc, 1))
|
|
value = resolve_ifunc (value, map, sym_map);
|
|
*reloc_addr = value;
|
|
return;
|
|
|
|
case R_PPC64_JMP_IREL:
|
|
if (__builtin_expect (!skip_ifunc, 1))
|
|
value = resolve_ifunc (value, map, sym_map);
|
|
/* Fall thru */
|
|
case R_PPC64_JMP_SLOT:
|
|
#ifdef RESOLVE_CONFLICT_FIND_MAP
|
|
elf_machine_plt_conflict (reloc_addr, value);
|
|
#else
|
|
elf_machine_fixup_plt (map, sym_map, reloc, reloc_addr, value);
|
|
#endif
|
|
return;
|
|
|
|
case R_PPC64_DTPMOD64:
|
|
#ifdef RTLD_BOOTSTRAP
|
|
/* During startup the dynamic linker is always index 1. */
|
|
*reloc_addr = 1;
|
|
#else
|
|
/* Get the information from the link map returned by the
|
|
resolve function. */
|
|
if (sym_map != NULL)
|
|
*reloc_addr = sym_map->l_tls_modid;
|
|
#endif
|
|
return;
|
|
|
|
case R_PPC64_DTPREL64:
|
|
/* During relocation all TLS symbols are defined and used.
|
|
Therefore the offset is already correct. */
|
|
#ifndef RTLD_BOOTSTRAP
|
|
if (sym_map != NULL)
|
|
*reloc_addr = TLS_DTPREL_VALUE (sym, reloc);
|
|
#endif
|
|
return;
|
|
|
|
case R_PPC64_TPREL64:
|
|
*reloc_addr = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
return;
|
|
|
|
case R_PPC64_TPREL16_LO_DS:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
if (dont_expect ((value & 3) != 0))
|
|
_dl_reloc_overflow (map, "R_PPC64_TPREL16_LO_DS", reloc_addr, refsym);
|
|
BIT_INSERT (*(Elf64_Half *) reloc_addr, value, 0xfffc);
|
|
break;
|
|
|
|
case R_PPC64_TPREL16_DS:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
if (dont_expect ((value + 0x8000) >= 0x10000 || (value & 3) != 0))
|
|
_dl_reloc_overflow (map, "R_PPC64_TPREL16_DS", reloc_addr, refsym);
|
|
BIT_INSERT (*(Elf64_Half *) reloc_addr, value, 0xfffc);
|
|
break;
|
|
|
|
case R_PPC64_TPREL16:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
if (dont_expect ((value + 0x8000) >= 0x10000))
|
|
_dl_reloc_overflow (map, "R_PPC64_TPREL16", reloc_addr, refsym);
|
|
*(Elf64_Half *) reloc_addr = PPC_LO (value);
|
|
break;
|
|
|
|
case R_PPC64_TPREL16_LO:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
*(Elf64_Half *) reloc_addr = PPC_LO (value);
|
|
break;
|
|
|
|
case R_PPC64_TPREL16_HI:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
*(Elf64_Half *) reloc_addr = PPC_HI (value);
|
|
break;
|
|
|
|
case R_PPC64_TPREL16_HA:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
*(Elf64_Half *) reloc_addr = PPC_HA (value);
|
|
break;
|
|
|
|
case R_PPC64_TPREL16_HIGHER:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
*(Elf64_Half *) reloc_addr = PPC_HIGHER (value);
|
|
break;
|
|
|
|
case R_PPC64_TPREL16_HIGHEST:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
*(Elf64_Half *) reloc_addr = PPC_HIGHEST (value);
|
|
break;
|
|
|
|
case R_PPC64_TPREL16_HIGHERA:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
*(Elf64_Half *) reloc_addr = PPC_HIGHERA (value);
|
|
break;
|
|
|
|
case R_PPC64_TPREL16_HIGHESTA:
|
|
value = elf_machine_tprel (map, sym_map, sym, reloc);
|
|
*(Elf64_Half *) reloc_addr = PPC_HIGHESTA (value);
|
|
break;
|
|
|
|
#ifndef RTLD_BOOTSTRAP /* None of the following appear in ld.so */
|
|
case R_PPC64_ADDR16_LO_DS:
|
|
if (dont_expect ((value & 3) != 0))
|
|
_dl_reloc_overflow (map, "R_PPC64_ADDR16_LO_DS", reloc_addr, refsym);
|
|
BIT_INSERT (*(Elf64_Half *) reloc_addr, value, 0xfffc);
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_LO:
|
|
*(Elf64_Half *) reloc_addr = PPC_LO (value);
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HI:
|
|
*(Elf64_Half *) reloc_addr = PPC_HI (value);
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HA:
|
|
*(Elf64_Half *) reloc_addr = PPC_HA (value);
|
|
break;
|
|
|
|
case R_PPC64_ADDR30:
|
|
{
|
|
Elf64_Addr delta = value - (Elf64_Xword) reloc_addr;
|
|
if (dont_expect ((delta + 0x80000000) >= 0x10000000
|
|
|| (delta & 3) != 0))
|
|
_dl_reloc_overflow (map, "R_PPC64_ADDR30", reloc_addr, refsym);
|
|
BIT_INSERT (*(Elf64_Word *) reloc_addr, delta, 0xfffffffc);
|
|
}
|
|
break;
|
|
|
|
case R_PPC64_COPY:
|
|
if (dont_expect (sym == NULL))
|
|
/* This can happen in trace mode when an object could not be found. */
|
|
return;
|
|
if (dont_expect (sym->st_size > refsym->st_size
|
|
|| (GLRO(dl_verbose)
|
|
&& sym->st_size < refsym->st_size)))
|
|
{
|
|
const char *strtab;
|
|
|
|
strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
|
|
_dl_error_printf ("%s: Symbol `%s' has different size" \
|
|
" in shared object," \
|
|
" consider re-linking\n",
|
|
_dl_argv[0] ?: "<program name unknown>",
|
|
strtab + refsym->st_name);
|
|
}
|
|
memcpy (reloc_addr_arg, (char *) value,
|
|
MIN (sym->st_size, refsym->st_size));
|
|
return;
|
|
|
|
case R_PPC64_UADDR64:
|
|
/* We are big-endian. */
|
|
((char *) reloc_addr_arg)[0] = (value >> 56) & 0xff;
|
|
((char *) reloc_addr_arg)[1] = (value >> 48) & 0xff;
|
|
((char *) reloc_addr_arg)[2] = (value >> 40) & 0xff;
|
|
((char *) reloc_addr_arg)[3] = (value >> 32) & 0xff;
|
|
((char *) reloc_addr_arg)[4] = (value >> 24) & 0xff;
|
|
((char *) reloc_addr_arg)[5] = (value >> 16) & 0xff;
|
|
((char *) reloc_addr_arg)[6] = (value >> 8) & 0xff;
|
|
((char *) reloc_addr_arg)[7] = (value >> 0) & 0xff;
|
|
return;
|
|
|
|
case R_PPC64_UADDR32:
|
|
/* We are big-endian. */
|
|
((char *) reloc_addr_arg)[0] = (value >> 24) & 0xff;
|
|
((char *) reloc_addr_arg)[1] = (value >> 16) & 0xff;
|
|
((char *) reloc_addr_arg)[2] = (value >> 8) & 0xff;
|
|
((char *) reloc_addr_arg)[3] = (value >> 0) & 0xff;
|
|
return;
|
|
|
|
case R_PPC64_ADDR32:
|
|
if (dont_expect ((value + 0x80000000) >= 0x10000000))
|
|
_dl_reloc_overflow (map, "R_PPC64_ADDR32", reloc_addr, refsym);
|
|
*(Elf64_Word *) reloc_addr = value;
|
|
return;
|
|
|
|
case R_PPC64_ADDR24:
|
|
if (dont_expect ((value + 0x2000000) >= 0x4000000 || (value & 3) != 0))
|
|
_dl_reloc_overflow (map, "R_PPC64_ADDR24", reloc_addr, refsym);
|
|
BIT_INSERT (*(Elf64_Word *) reloc_addr, value, 0x3fffffc);
|
|
break;
|
|
|
|
case R_PPC64_ADDR16:
|
|
if (dont_expect ((value + 0x8000) >= 0x10000))
|
|
_dl_reloc_overflow (map, "R_PPC64_ADDR16", reloc_addr, refsym);
|
|
*(Elf64_Half *) reloc_addr = value;
|
|
break;
|
|
|
|
case R_PPC64_UADDR16:
|
|
if (dont_expect ((value + 0x8000) >= 0x10000))
|
|
_dl_reloc_overflow (map, "R_PPC64_UADDR16", reloc_addr, refsym);
|
|
/* We are big-endian. */
|
|
((char *) reloc_addr_arg)[0] = (value >> 8) & 0xff;
|
|
((char *) reloc_addr_arg)[1] = (value >> 0) & 0xff;
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_DS:
|
|
if (dont_expect ((value + 0x8000) >= 0x10000 || (value & 3) != 0))
|
|
_dl_reloc_overflow (map, "R_PPC64_ADDR16_DS", reloc_addr, refsym);
|
|
BIT_INSERT (*(Elf64_Half *) reloc_addr, value, 0xfffc);
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HIGHER:
|
|
*(Elf64_Half *) reloc_addr = PPC_HIGHER (value);
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HIGHEST:
|
|
*(Elf64_Half *) reloc_addr = PPC_HIGHEST (value);
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HIGHERA:
|
|
*(Elf64_Half *) reloc_addr = PPC_HIGHERA (value);
|
|
break;
|
|
|
|
case R_PPC64_ADDR16_HIGHESTA:
|
|
*(Elf64_Half *) reloc_addr = PPC_HIGHESTA (value);
|
|
break;
|
|
|
|
case R_PPC64_ADDR14:
|
|
case R_PPC64_ADDR14_BRTAKEN:
|
|
case R_PPC64_ADDR14_BRNTAKEN:
|
|
{
|
|
if (dont_expect ((value + 0x8000) >= 0x10000 || (value & 3) != 0))
|
|
_dl_reloc_overflow (map, "R_PPC64_ADDR14", reloc_addr, refsym);
|
|
Elf64_Word insn = *(Elf64_Word *) reloc_addr;
|
|
BIT_INSERT (insn, value, 0xfffc);
|
|
if (r_type != R_PPC64_ADDR14)
|
|
{
|
|
insn &= ~(1 << 21);
|
|
if (r_type == R_PPC64_ADDR14_BRTAKEN)
|
|
insn |= 1 << 21;
|
|
if ((insn & (0x14 << 21)) == (0x04 << 21))
|
|
insn |= 0x02 << 21;
|
|
else if ((insn & (0x14 << 21)) == (0x10 << 21))
|
|
insn |= 0x08 << 21;
|
|
}
|
|
*(Elf64_Word *) reloc_addr = insn;
|
|
}
|
|
break;
|
|
|
|
case R_PPC64_REL32:
|
|
*(Elf64_Word *) reloc_addr = value - (Elf64_Addr) reloc_addr;
|
|
return;
|
|
|
|
case R_PPC64_REL64:
|
|
*reloc_addr = value - (Elf64_Addr) reloc_addr;
|
|
return;
|
|
#endif /* !RTLD_BOOTSTRAP */
|
|
|
|
default:
|
|
_dl_reloc_bad_type (map, r_type, 0);
|
|
return;
|
|
}
|
|
MODIFIED_CODE_NOQUEUE (reloc_addr);
|
|
}
|
|
|
|
auto inline void __attribute__ ((always_inline))
|
|
elf_machine_lazy_rel (struct link_map *map,
|
|
Elf64_Addr l_addr, const Elf64_Rela *reloc,
|
|
int skip_ifunc)
|
|
{
|
|
/* elf_machine_runtime_setup handles this. */
|
|
}
|
|
|
|
|
|
#endif /* RESOLVE */
|