glibc/sysdeps/ieee754/dbl-64/e_j1.c
Joseph Myers 46a3d3c7d6 Set errno for y1 overflow (bug 17050).
This patch fixes bug 17050, missing errno setting for y1 overflow (for
small positive arguments).  An appropriate check is added for overflow
directly in the __ieee754_y1 implementation, similar to the check
present for yn (doing it there rather than in the wrapper also avoids
yn needing to repeat the check when called for order 1 or -1 and it
uses __ieee754_y1).

Tested x86_64 and x86; no ulps update needed.  Also tested for mips64
to verify the ldbl-128 fix (the ldbl-128ibm code just #includes the
ldbl-128 file).

	[BZ #17050]
	* sysdeps/ieee754/dbl-64/e_j1.c: Include <errno.h>.
	(__ieee754_y1): Set errno if return value overflows.
	* sysdeps/ieee754/flt-32/e_j1f.c: Include <errno.h>.
	(__ieee754_y1f): Set errno if return value overflows.
	* sysdeps/ieee754/ldbl-128/e_j1l.c: Include <errno.h>.
	(__ieee754_y1l): Set errno if return value overflows.
	* sysdeps/ieee754/ldbl-96/e_j1l.c: Include <errno.h>.
	(__ieee754_y1l): Set errno if return value overflows.
	* math/auto-libm-test-in: Add more tests of y0, y1 and yn.
	* math/auto-libm-test-out: Regenerated.
2014-06-23 20:17:13 +00:00

458 lines
15 KiB
C

/* @(#)e_j1.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
for performance improvement on pipelined processors.
*/
/* __ieee754_j1(x), __ieee754_y1(x)
* Bessel function of the first and second kinds of order zero.
* Method -- j1(x):
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
* for x in (0,2)
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
* for x in (2,inf)
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* as follow:
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (sin(x) + cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j1(nan)= nan
* j1(0) = 0
* j1(inf) = 0
*
* Method -- y1(x):
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
* 2. For x<2.
* Since
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
* We use the following function to approximate y1,
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
* where for x in [0,2] (abs err less than 2**-65.89)
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
* Note: For tiny x, 1/x dominate y1 and hence
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
* 3. For x>=2.
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* by method mentioned above.
*/
#include <errno.h>
#include <math.h>
#include <math_private.h>
static double pone (double), qone (double);
static const double
huge = 1e300,
one = 1.0,
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
/* R0/S0 on [0,2] */
R[] = { -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
-1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
4.96727999609584448412e-08 }, /* 0x3E6AAAFA, 0x46CA0BD9 */
S[] = { 0.0, 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
1.23542274426137913908e-11 }; /* 0x3DAB2ACF, 0xCFB97ED8 */
static const double zero = 0.0;
double
__ieee754_j1 (double x)
{
double z, s, c, ss, cc, r, u, v, y, r1, r2, s1, s2, s3, z2, z4;
int32_t hx, ix;
GET_HIGH_WORD (hx, x);
ix = hx & 0x7fffffff;
if (__glibc_unlikely (ix >= 0x7ff00000))
return one / x;
y = fabs (x);
if (ix >= 0x40000000) /* |x| >= 2.0 */
{
__sincos (y, &s, &c);
ss = -s - c;
cc = s - c;
if (ix < 0x7fe00000) /* make sure y+y not overflow */
{
z = __cos (y + y);
if ((s * c) > zero)
cc = z / ss;
else
ss = z / cc;
}
/*
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
*/
if (ix > 0x48000000)
z = (invsqrtpi * cc) / __ieee754_sqrt (y);
else
{
u = pone (y); v = qone (y);
z = invsqrtpi * (u * cc - v * ss) / __ieee754_sqrt (y);
}
if (hx < 0)
return -z;
else
return z;
}
if (__glibc_unlikely (ix < 0x3e400000)) /* |x|<2**-27 */
{
if (huge + x > one)
return 0.5 * x; /* inexact if x!=0 necessary */
}
z = x * x;
r1 = z * R[0]; z2 = z * z;
r2 = R[1] + z * R[2]; z4 = z2 * z2;
r = r1 + z2 * r2 + z4 * R[3];
r *= x;
s1 = one + z * S[1];
s2 = S[2] + z * S[3];
s3 = S[4] + z * S[5];
s = s1 + z2 * s2 + z4 * s3;
return (x * 0.5 + r / s);
}
strong_alias (__ieee754_j1, __j1_finite)
static const double U0[5] = {
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
};
static const double V0[5] = {
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
};
double
__ieee754_y1 (double x)
{
double z, s, c, ss, cc, u, v, u1, u2, v1, v2, v3, z2, z4;
int32_t hx, ix, lx;
EXTRACT_WORDS (hx, lx, x);
ix = 0x7fffffff & hx;
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
if (__glibc_unlikely (ix >= 0x7ff00000))
return one / (x + x * x);
if (__glibc_unlikely ((ix | lx) == 0))
return -HUGE_VAL + x;
/* -inf and overflow exception. */;
if (__glibc_unlikely (hx < 0))
return zero / (zero * x);
if (ix >= 0x40000000) /* |x| >= 2.0 */
{
__sincos (x, &s, &c);
ss = -s - c;
cc = s - c;
if (ix < 0x7fe00000) /* make sure x+x not overflow */
{
z = __cos (x + x);
if ((s * c) > zero)
cc = z / ss;
else
ss = z / cc;
}
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
* where x0 = x-3pi/4
* Better formula:
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (cos(x) + sin(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
if (ix > 0x48000000)
z = (invsqrtpi * ss) / __ieee754_sqrt (x);
else
{
u = pone (x); v = qone (x);
z = invsqrtpi * (u * ss + v * cc) / __ieee754_sqrt (x);
}
return z;
}
if (__glibc_unlikely (ix <= 0x3c900000)) /* x < 2**-54 */
{
z = -tpi / x;
if (__isinf (z))
__set_errno (ERANGE);
return z;
}
z = x * x;
u1 = U0[0] + z * U0[1]; z2 = z * z;
u2 = U0[2] + z * U0[3]; z4 = z2 * z2;
u = u1 + z2 * u2 + z4 * U0[4];
v1 = one + z * V0[0];
v2 = V0[1] + z * V0[2];
v3 = V0[3] + z * V0[4];
v = v1 + z2 * v2 + z4 * v3;
return (x * (u / v) + tpi * (__ieee754_j1 (x) * __ieee754_log (x) - one / x));
}
strong_alias (__ieee754_y1, __y1_finite)
/* For x >= 8, the asymptotic expansions of pone is
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
* We approximate pone by
* pone(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
*/
static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
};
static const double ps8[5] = {
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
};
static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
};
static const double ps5[5] = {
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
};
static const double pr3[6] = {
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
};
static const double ps3[5] = {
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
};
static const double pr2[6] = { /* for x in [2.8570,2]=1/[0.3499,0.5] */
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
};
static const double ps2[5] = {
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
};
static double
pone (double x)
{
const double *p, *q;
double z, r, s, r1, r2, r3, s1, s2, s3, z2, z4;
int32_t ix;
GET_HIGH_WORD (ix, x);
ix &= 0x7fffffff;
if (ix >= 0x41b00000)
{
return one;
}
else if (ix >= 0x40200000)
{
p = pr8; q = ps8;
}
else if (ix >= 0x40122E8B)
{
p = pr5; q = ps5;
}
else if (ix >= 0x4006DB6D)
{
p = pr3; q = ps3;
}
else if (ix >= 0x40000000)
{
p = pr2; q = ps2;
}
z = one / (x * x);
r1 = p[0] + z * p[1]; z2 = z * z;
r2 = p[2] + z * p[3]; z4 = z2 * z2;
r3 = p[4] + z * p[5];
r = r1 + z2 * r2 + z4 * r3;
s1 = one + z * q[0];
s2 = q[1] + z * q[2];
s3 = q[3] + z * q[4];
s = s1 + z2 * s2 + z4 * s3;
return one + r / s;
}
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate pone by
* qone(x) = s*(0.375 + (R/S))
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs1*s^2 + ... + qs6*s^12
* and
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
*/
static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
};
static const double qs8[6] = {
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
};
static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
};
static const double qs5[6] = {
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
};
static const double qr3[6] = {
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
};
static const double qs3[6] = {
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
};
static const double qr2[6] = { /* for x in [2.8570,2]=1/[0.3499,0.5] */
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
};
static const double qs2[6] = {
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
};
static double
qone (double x)
{
const double *p, *q;
double s, r, z, r1, r2, r3, s1, s2, s3, z2, z4, z6;
int32_t ix;
GET_HIGH_WORD (ix, x);
ix &= 0x7fffffff;
if (ix >= 0x41b00000)
{
return .375 / x;
}
else if (ix >= 0x40200000)
{
p = qr8; q = qs8;
}
else if (ix >= 0x40122E8B)
{
p = qr5; q = qs5;
}
else if (ix >= 0x4006DB6D)
{
p = qr3; q = qs3;
}
else if (ix >= 0x40000000)
{
p = qr2; q = qs2;
}
z = one / (x * x);
r1 = p[0] + z * p[1]; z2 = z * z;
r2 = p[2] + z * p[3]; z4 = z2 * z2;
r3 = p[4] + z * p[5]; z6 = z4 * z2;
r = r1 + z2 * r2 + z4 * r3;
s1 = one + z * q[0];
s2 = q[1] + z * q[2];
s3 = q[3] + z * q[4];
s = s1 + z2 * s2 + z4 * s3 + z6 * q[5];
return (.375 + r / s) / x;
}