mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-25 20:21:07 +00:00
ec239360d1
* db2/Makefile (distribute): Remove files which do not exist anymore.
832 lines
22 KiB
C
832 lines
22 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 1996, 1997, 1998
|
|
* Sleepycat Software. All rights reserved.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1990, 1993, 1994, 1995, 1996
|
|
* Keith Bostic. All rights reserved.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1990, 1993, 1994, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Mike Olson.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#ifndef lint
|
|
static const char sccsid[] = "@(#)bt_put.c 10.54 (Sleepycat) 12/6/98";
|
|
#endif /* not lint */
|
|
|
|
#ifndef NO_SYSTEM_INCLUDES
|
|
#include <sys/types.h>
|
|
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include "db_int.h"
|
|
#include "db_page.h"
|
|
#include "btree.h"
|
|
|
|
static int __bam_fixed __P((DBC *, DBT *));
|
|
static int __bam_ndup __P((DBC *, PAGE *, u_int32_t));
|
|
static int __bam_ovput __P((DBC *, PAGE *, u_int32_t, DBT *));
|
|
static int __bam_partial __P((DBC *,
|
|
DBT *, PAGE *, u_int32_t, u_int32_t, u_int32_t));
|
|
static u_int32_t __bam_partsize __P((DBT *, PAGE *, u_int32_t));
|
|
|
|
/*
|
|
* __bam_iitem --
|
|
* Insert an item into the tree.
|
|
*
|
|
* PUBLIC: int __bam_iitem __P((DBC *,
|
|
* PUBLIC: PAGE **, db_indx_t *, DBT *, DBT *, u_int32_t, u_int32_t));
|
|
*/
|
|
int
|
|
__bam_iitem(dbc, hp, indxp, key, data, op, flags)
|
|
DBC *dbc;
|
|
PAGE **hp;
|
|
db_indx_t *indxp;
|
|
DBT *key, *data;
|
|
u_int32_t op, flags;
|
|
{
|
|
BTREE *t;
|
|
BKEYDATA *bk;
|
|
DB *dbp;
|
|
DBT tdbt;
|
|
PAGE *h;
|
|
db_indx_t indx, nbytes;
|
|
u_int32_t data_size, have_bytes, need_bytes, needed;
|
|
int bigkey, bigdata, dupadjust, replace, ret;
|
|
|
|
COMPQUIET(bk, NULL);
|
|
|
|
dbp = dbc->dbp;
|
|
t = dbp->internal;
|
|
h = *hp;
|
|
indx = *indxp;
|
|
dupadjust = replace = 0;
|
|
|
|
/*
|
|
* If it's a page of duplicates, call the common code to do the work.
|
|
*
|
|
* !!!
|
|
* Here's where the hp and indxp are important. The duplicate code
|
|
* may decide to rework/rearrange the pages and indices we're using,
|
|
* so the caller must understand that the page stack may change.
|
|
*/
|
|
if (TYPE(h) == P_DUPLICATE) {
|
|
/* Adjust the index for the new item if it's a DB_AFTER op. */
|
|
if (op == DB_AFTER)
|
|
++*indxp;
|
|
|
|
/* Remove the current item if it's a DB_CURRENT op. */
|
|
if (op == DB_CURRENT) {
|
|
bk = GET_BKEYDATA(*hp, *indxp);
|
|
switch (B_TYPE(bk->type)) {
|
|
case B_KEYDATA:
|
|
nbytes = BKEYDATA_SIZE(bk->len);
|
|
break;
|
|
case B_OVERFLOW:
|
|
nbytes = BOVERFLOW_SIZE;
|
|
break;
|
|
default:
|
|
return (__db_pgfmt(dbp, h->pgno));
|
|
}
|
|
if ((ret = __db_ditem(dbc, *hp, *indxp, nbytes)) != 0)
|
|
return (ret);
|
|
}
|
|
|
|
/* Put the new/replacement item onto the page. */
|
|
if ((ret = __db_dput(dbc, data, hp, indxp, __bam_new)) != 0)
|
|
return (ret);
|
|
|
|
goto done;
|
|
}
|
|
|
|
/* Handle fixed-length records: build the real record. */
|
|
if (F_ISSET(dbp, DB_RE_FIXEDLEN) && data->size != t->recno->re_len) {
|
|
tdbt = *data;
|
|
if ((ret = __bam_fixed(dbc, &tdbt)) != 0)
|
|
return (ret);
|
|
data = &tdbt;
|
|
}
|
|
|
|
/*
|
|
* Figure out how much space the data will take, including if it's a
|
|
* partial record. If either of the key or data items won't fit on
|
|
* a page, we'll have to store them on overflow pages.
|
|
*/
|
|
bigkey = LF_ISSET(BI_NEWKEY) && key->size > t->bt_ovflsize;
|
|
data_size = F_ISSET(data, DB_DBT_PARTIAL) ?
|
|
__bam_partsize(data, h, indx) : data->size;
|
|
bigdata = data_size > t->bt_ovflsize;
|
|
|
|
needed = 0;
|
|
if (LF_ISSET(BI_NEWKEY)) {
|
|
/* If BI_NEWKEY is set we're adding a new key and data pair. */
|
|
if (bigkey)
|
|
needed += BOVERFLOW_PSIZE;
|
|
else
|
|
needed += BKEYDATA_PSIZE(key->size);
|
|
if (bigdata)
|
|
needed += BOVERFLOW_PSIZE;
|
|
else
|
|
needed += BKEYDATA_PSIZE(data_size);
|
|
} else {
|
|
/*
|
|
* We're either overwriting the data item of a key/data pair
|
|
* or we're adding the data item only, i.e. a new duplicate.
|
|
*/
|
|
if (op == DB_CURRENT) {
|
|
bk = GET_BKEYDATA(h,
|
|
indx + (TYPE(h) == P_LBTREE ? O_INDX : 0));
|
|
if (B_TYPE(bk->type) == B_KEYDATA)
|
|
have_bytes = BKEYDATA_PSIZE(bk->len);
|
|
else
|
|
have_bytes = BOVERFLOW_PSIZE;
|
|
need_bytes = 0;
|
|
} else {
|
|
have_bytes = 0;
|
|
need_bytes = sizeof(db_indx_t);
|
|
}
|
|
if (bigdata)
|
|
need_bytes += BOVERFLOW_PSIZE;
|
|
else
|
|
need_bytes += BKEYDATA_PSIZE(data_size);
|
|
|
|
if (have_bytes < need_bytes)
|
|
needed += need_bytes - have_bytes;
|
|
}
|
|
|
|
/*
|
|
* If there's not enough room, or the user has put a ceiling on the
|
|
* number of keys permitted in the page, split the page.
|
|
*
|
|
* XXX
|
|
* The t->bt_maxkey test here may be insufficient -- do we have to
|
|
* check in the btree split code, so we don't undo it there!?!?
|
|
*/
|
|
if (P_FREESPACE(h) < needed ||
|
|
(t->bt_maxkey != 0 && NUM_ENT(h) > t->bt_maxkey))
|
|
return (DB_NEEDSPLIT);
|
|
|
|
/* Handle partial puts: build the real record. */
|
|
if (F_ISSET(data, DB_DBT_PARTIAL)) {
|
|
tdbt = *data;
|
|
if ((ret = __bam_partial(dbc,
|
|
&tdbt, h, indx, data_size, flags)) != 0)
|
|
return (ret);
|
|
data = &tdbt;
|
|
}
|
|
|
|
/*
|
|
* The code breaks it up into six cases:
|
|
*
|
|
* 1. Append a new key/data pair.
|
|
* 2. Insert a new key/data pair.
|
|
* 3. Append a new data item (a new duplicate).
|
|
* 4. Insert a new data item (a new duplicate).
|
|
* 5. Overflow item: delete and re-add the data item.
|
|
* 6. Replace the data item.
|
|
*/
|
|
if (LF_ISSET(BI_NEWKEY)) {
|
|
switch (op) {
|
|
case DB_AFTER: /* 1. Append a new key/data pair. */
|
|
indx += 2;
|
|
*indxp += 2;
|
|
break;
|
|
case DB_BEFORE: /* 2. Insert a new key/data pair. */
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Add the key. */
|
|
if (bigkey) {
|
|
if ((ret = __bam_ovput(dbc, h, indx, key)) != 0)
|
|
return (ret);
|
|
} else
|
|
if ((ret = __db_pitem(dbc, h, indx,
|
|
BKEYDATA_SIZE(key->size), NULL, key)) != 0)
|
|
return (ret);
|
|
++indx;
|
|
} else {
|
|
switch (op) {
|
|
case DB_AFTER: /* 3. Append a new data item. */
|
|
if (TYPE(h) == P_LBTREE) {
|
|
/*
|
|
* Adjust the cursor and copy in the key for
|
|
* the duplicate.
|
|
*/
|
|
if ((ret = __bam_adjindx(dbc,
|
|
h, indx + P_INDX, indx, 1)) != 0)
|
|
return (ret);
|
|
|
|
indx += 3;
|
|
dupadjust = 1;
|
|
|
|
*indxp += 2;
|
|
} else {
|
|
++indx;
|
|
__bam_ca_di(dbp, h->pgno, indx, 1);
|
|
|
|
*indxp += 1;
|
|
}
|
|
break;
|
|
case DB_BEFORE: /* 4. Insert a new data item. */
|
|
if (TYPE(h) == P_LBTREE) {
|
|
/*
|
|
* Adjust the cursor and copy in the key for
|
|
* the duplicate.
|
|
*/
|
|
if ((ret =
|
|
__bam_adjindx(dbc, h, indx, indx, 1)) != 0)
|
|
return (ret);
|
|
|
|
++indx;
|
|
dupadjust = 1;
|
|
} else
|
|
__bam_ca_di(dbp, h->pgno, indx, 1);
|
|
break;
|
|
case DB_CURRENT:
|
|
if (TYPE(h) == P_LBTREE)
|
|
++indx;
|
|
|
|
/*
|
|
* 5. Delete/re-add the data item.
|
|
*
|
|
* If we're dealing with offpage items, we have to
|
|
* delete and then re-add the item.
|
|
*/
|
|
if (bigdata || B_TYPE(bk->type) != B_KEYDATA) {
|
|
if ((ret = __bam_ditem(dbc, h, indx)) != 0)
|
|
return (ret);
|
|
break;
|
|
}
|
|
|
|
/* 6. Replace the data item. */
|
|
replace = 1;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
/* Add the data. */
|
|
if (bigdata) {
|
|
if ((ret = __bam_ovput(dbc, h, indx, data)) != 0)
|
|
return (ret);
|
|
} else {
|
|
BKEYDATA __bk;
|
|
DBT __hdr;
|
|
|
|
if (LF_ISSET(BI_DELETED)) {
|
|
B_TSET(__bk.type, B_KEYDATA, 1);
|
|
__bk.len = data->size;
|
|
__hdr.data = &__bk;
|
|
__hdr.size = SSZA(BKEYDATA, data);
|
|
ret = __db_pitem(dbc, h, indx,
|
|
BKEYDATA_SIZE(data->size), &__hdr, data);
|
|
} else if (replace)
|
|
ret = __bam_ritem(dbc, h, indx, data);
|
|
else
|
|
ret = __db_pitem(dbc, h, indx,
|
|
BKEYDATA_SIZE(data->size), NULL, data);
|
|
if (ret != 0)
|
|
return (ret);
|
|
}
|
|
|
|
if ((ret = memp_fset(dbp->mpf, h, DB_MPOOL_DIRTY)) != 0)
|
|
return (ret);
|
|
|
|
/*
|
|
* If the page is at least 50% full, and we added a duplicate, see if
|
|
* that set of duplicates takes up at least 25% of the space. If it
|
|
* does, move it off onto its own page.
|
|
*/
|
|
if (dupadjust && P_FREESPACE(h) <= dbp->pgsize / 2) {
|
|
--indx;
|
|
if ((ret = __bam_ndup(dbc, h, indx)) != 0)
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* If we've changed the record count, update the tree. Record counts
|
|
* need to be updated in recno databases and in btree databases where
|
|
* we are supporting records. In both cases, adjust the count if the
|
|
* operation wasn't performed on the current record or when the caller
|
|
* overrides and wants the adjustment made regardless.
|
|
*/
|
|
done: if (LF_ISSET(BI_DOINCR) ||
|
|
(op != DB_CURRENT &&
|
|
(F_ISSET(dbp, DB_BT_RECNUM) || dbp->type == DB_RECNO)))
|
|
if ((ret = __bam_adjust(dbc, 1)) != 0)
|
|
return (ret);
|
|
|
|
/* If we've modified a recno file, set the flag */
|
|
if (t->recno != NULL)
|
|
F_SET(t->recno, RECNO_MODIFIED);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_partsize --
|
|
* Figure out how much space a partial data item is in total.
|
|
*/
|
|
static u_int32_t
|
|
__bam_partsize(data, h, indx)
|
|
DBT *data;
|
|
PAGE *h;
|
|
u_int32_t indx;
|
|
{
|
|
BKEYDATA *bk;
|
|
u_int32_t nbytes;
|
|
|
|
/*
|
|
* Figure out how much total space we'll need. If the record doesn't
|
|
* already exist, it's simply the data we're provided.
|
|
*/
|
|
if (indx >= NUM_ENT(h))
|
|
return (data->doff + data->size);
|
|
|
|
/*
|
|
* Otherwise, it's the data provided plus any already existing data
|
|
* that we're not replacing.
|
|
*/
|
|
bk = GET_BKEYDATA(h, indx + (TYPE(h) == P_LBTREE ? O_INDX : 0));
|
|
nbytes =
|
|
B_TYPE(bk->type) == B_OVERFLOW ? ((BOVERFLOW *)bk)->tlen : bk->len;
|
|
|
|
/*
|
|
* There are really two cases here:
|
|
*
|
|
* Case 1: We are replacing some bytes that do not exist (i.e., they
|
|
* are past the end of the record). In this case the number of bytes
|
|
* we are replacing is irrelevant and all we care about is how many
|
|
* bytes we are going to add from offset. So, the new record length
|
|
* is going to be the size of the new bytes (size) plus wherever those
|
|
* new bytes begin (doff).
|
|
*
|
|
* Case 2: All the bytes we are replacing exist. Therefore, the new
|
|
* size is the oldsize (nbytes) minus the bytes we are replacing (dlen)
|
|
* plus the bytes we are adding (size).
|
|
*/
|
|
if (nbytes < data->doff + data->dlen) /* Case 1 */
|
|
return (data->doff + data->size);
|
|
|
|
return (nbytes + data->size - data->dlen); /* Case 2 */
|
|
}
|
|
|
|
/*
|
|
* OVPUT --
|
|
* Copy an overflow item onto a page.
|
|
*/
|
|
#undef OVPUT
|
|
#define OVPUT(h, indx, bo) do { \
|
|
DBT __hdr; \
|
|
memset(&__hdr, 0, sizeof(__hdr)); \
|
|
__hdr.data = &bo; \
|
|
__hdr.size = BOVERFLOW_SIZE; \
|
|
if ((ret = __db_pitem(dbc, \
|
|
h, indx, BOVERFLOW_SIZE, &__hdr, NULL)) != 0) \
|
|
return (ret); \
|
|
} while (0)
|
|
|
|
/*
|
|
* __bam_ovput --
|
|
* Build an overflow item and put it on the page.
|
|
*/
|
|
static int
|
|
__bam_ovput(dbc, h, indx, item)
|
|
DBC *dbc;
|
|
PAGE *h;
|
|
u_int32_t indx;
|
|
DBT *item;
|
|
{
|
|
BOVERFLOW bo;
|
|
int ret;
|
|
|
|
UMRW(bo.unused1);
|
|
B_TSET(bo.type, B_OVERFLOW, 0);
|
|
UMRW(bo.unused2);
|
|
if ((ret = __db_poff(dbc, item, &bo.pgno, __bam_new)) != 0)
|
|
return (ret);
|
|
bo.tlen = item->size;
|
|
|
|
OVPUT(h, indx, bo);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* __bam_ritem --
|
|
* Replace an item on a page.
|
|
*
|
|
* PUBLIC: int __bam_ritem __P((DBC *, PAGE *, u_int32_t, DBT *));
|
|
*/
|
|
int
|
|
__bam_ritem(dbc, h, indx, data)
|
|
DBC *dbc;
|
|
PAGE *h;
|
|
u_int32_t indx;
|
|
DBT *data;
|
|
{
|
|
BKEYDATA *bk;
|
|
DB *dbp;
|
|
DBT orig, repl;
|
|
db_indx_t cnt, lo, ln, min, off, prefix, suffix;
|
|
int32_t nbytes;
|
|
int ret;
|
|
u_int8_t *p, *t;
|
|
|
|
dbp = dbc->dbp;
|
|
|
|
/*
|
|
* Replace a single item onto a page. The logic figuring out where
|
|
* to insert and whether it fits is handled in the caller. All we do
|
|
* here is manage the page shuffling.
|
|
*/
|
|
bk = GET_BKEYDATA(h, indx);
|
|
|
|
/* Log the change. */
|
|
if (DB_LOGGING(dbc)) {
|
|
/*
|
|
* We might as well check to see if the two data items share
|
|
* a common prefix and suffix -- it can save us a lot of log
|
|
* message if they're large.
|
|
*/
|
|
min = data->size < bk->len ? data->size : bk->len;
|
|
for (prefix = 0,
|
|
p = bk->data, t = data->data;
|
|
prefix < min && *p == *t; ++prefix, ++p, ++t)
|
|
;
|
|
|
|
min -= prefix;
|
|
for (suffix = 0,
|
|
p = (u_int8_t *)bk->data + bk->len - 1,
|
|
t = (u_int8_t *)data->data + data->size - 1;
|
|
suffix < min && *p == *t; ++suffix, --p, --t)
|
|
;
|
|
|
|
/* We only log the parts of the keys that have changed. */
|
|
orig.data = (u_int8_t *)bk->data + prefix;
|
|
orig.size = bk->len - (prefix + suffix);
|
|
repl.data = (u_int8_t *)data->data + prefix;
|
|
repl.size = data->size - (prefix + suffix);
|
|
if ((ret = __bam_repl_log(dbp->dbenv->lg_info, dbc->txn,
|
|
&LSN(h), 0, dbp->log_fileid, PGNO(h), &LSN(h),
|
|
(u_int32_t)indx, (u_int32_t)B_DISSET(bk->type),
|
|
&orig, &repl, (u_int32_t)prefix, (u_int32_t)suffix)) != 0)
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Set references to the first in-use byte on the page and the
|
|
* first byte of the item being replaced.
|
|
*/
|
|
p = (u_int8_t *)h + HOFFSET(h);
|
|
t = (u_int8_t *)bk;
|
|
|
|
/*
|
|
* If the entry is growing in size, shift the beginning of the data
|
|
* part of the page down. If the entry is shrinking in size, shift
|
|
* the beginning of the data part of the page up. Use memmove(3),
|
|
* the regions overlap.
|
|
*/
|
|
lo = BKEYDATA_SIZE(bk->len);
|
|
ln = BKEYDATA_SIZE(data->size);
|
|
if (lo != ln) {
|
|
nbytes = lo - ln; /* Signed difference. */
|
|
if (p == t) /* First index is fast. */
|
|
h->inp[indx] += nbytes;
|
|
else { /* Else, shift the page. */
|
|
memmove(p + nbytes, p, t - p);
|
|
|
|
/* Adjust the indices' offsets. */
|
|
off = h->inp[indx];
|
|
for (cnt = 0; cnt < NUM_ENT(h); ++cnt)
|
|
if (h->inp[cnt] <= off)
|
|
h->inp[cnt] += nbytes;
|
|
}
|
|
|
|
/* Clean up the page and adjust the item's reference. */
|
|
HOFFSET(h) += nbytes;
|
|
t += nbytes;
|
|
}
|
|
|
|
/* Copy the new item onto the page. */
|
|
bk = (BKEYDATA *)t;
|
|
B_TSET(bk->type, B_KEYDATA, 0);
|
|
bk->len = data->size;
|
|
memcpy(bk->data, data->data, data->size);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* __bam_ndup --
|
|
* Check to see if the duplicate set at indx should have its own page.
|
|
* If it should, create it.
|
|
*/
|
|
static int
|
|
__bam_ndup(dbc, h, indx)
|
|
DBC *dbc;
|
|
PAGE *h;
|
|
u_int32_t indx;
|
|
{
|
|
BKEYDATA *bk;
|
|
BOVERFLOW bo;
|
|
DB *dbp;
|
|
DBT hdr;
|
|
PAGE *cp;
|
|
db_indx_t cnt, cpindx, first, sz;
|
|
int ret;
|
|
|
|
dbp = dbc->dbp;
|
|
|
|
while (indx > 0 && h->inp[indx] == h->inp[indx - P_INDX])
|
|
indx -= P_INDX;
|
|
for (cnt = 0, sz = 0, first = indx;; ++cnt, indx += P_INDX) {
|
|
if (indx >= NUM_ENT(h) || h->inp[first] != h->inp[indx])
|
|
break;
|
|
bk = GET_BKEYDATA(h, indx);
|
|
sz += B_TYPE(bk->type) == B_KEYDATA ?
|
|
BKEYDATA_PSIZE(bk->len) : BOVERFLOW_PSIZE;
|
|
bk = GET_BKEYDATA(h, indx + O_INDX);
|
|
sz += B_TYPE(bk->type) == B_KEYDATA ?
|
|
BKEYDATA_PSIZE(bk->len) : BOVERFLOW_PSIZE;
|
|
}
|
|
|
|
/*
|
|
* If this set of duplicates is using more than 25% of the page, move
|
|
* them off. The choice of 25% is a WAG, but it has to be small enough
|
|
* that we can always split regardless of the presence of duplicates.
|
|
*/
|
|
if (sz < dbp->pgsize / 4)
|
|
return (0);
|
|
|
|
/* Get a new page. */
|
|
if ((ret = __bam_new(dbc, P_DUPLICATE, &cp)) != 0)
|
|
return (ret);
|
|
|
|
/*
|
|
* Move this set of duplicates off the page. First points to the first
|
|
* key of the first duplicate key/data pair, cnt is the number of pairs
|
|
* we're dealing with.
|
|
*/
|
|
memset(&hdr, 0, sizeof(hdr));
|
|
for (indx = first + O_INDX, cpindx = 0;; ++cpindx) {
|
|
/* Copy the entry to the new page. */
|
|
bk = GET_BKEYDATA(h, indx);
|
|
hdr.data = bk;
|
|
hdr.size = B_TYPE(bk->type) == B_KEYDATA ?
|
|
BKEYDATA_SIZE(bk->len) : BOVERFLOW_SIZE;
|
|
if ((ret =
|
|
__db_pitem(dbc, cp, cpindx, hdr.size, &hdr, NULL)) != 0)
|
|
goto err;
|
|
|
|
/*
|
|
* Move cursors referencing the old entry to the new entry.
|
|
* Done after the page put because __db_pitem() adjusts
|
|
* cursors on the new page, and before the delete because
|
|
* __db_ditem adjusts cursors on the old page.
|
|
*/
|
|
__bam_ca_dup(dbp,
|
|
PGNO(h), first, indx - O_INDX, PGNO(cp), cpindx);
|
|
|
|
/* Delete the data item. */
|
|
if ((ret = __db_ditem(dbc, h, indx, hdr.size)) != 0)
|
|
goto err;
|
|
|
|
/* Delete all but the first reference to the key. */
|
|
if (--cnt == 0)
|
|
break;
|
|
if ((ret = __bam_adjindx(dbc, h, indx, first, 0)) != 0)
|
|
goto err;
|
|
}
|
|
|
|
/* Put in a new data item that points to the duplicates page. */
|
|
UMRW(bo.unused1);
|
|
B_TSET(bo.type, B_DUPLICATE, 0);
|
|
UMRW(bo.unused2);
|
|
bo.pgno = cp->pgno;
|
|
bo.tlen = 0;
|
|
|
|
OVPUT(h, indx, bo);
|
|
|
|
return (memp_fput(dbp->mpf, cp, DB_MPOOL_DIRTY));
|
|
|
|
err: (void)__bam_free(dbc, cp);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* __bam_fixed --
|
|
* Build the real record for a fixed length put.
|
|
*/
|
|
static int
|
|
__bam_fixed(dbc, dbt)
|
|
DBC *dbc;
|
|
DBT *dbt;
|
|
{
|
|
DB *dbp;
|
|
RECNO *rp;
|
|
int ret;
|
|
|
|
dbp = dbc->dbp;
|
|
rp = ((BTREE *)dbp->internal)->recno;
|
|
|
|
/*
|
|
* If database contains fixed-length records, and the record is long,
|
|
* return EINVAL.
|
|
*/
|
|
if (dbt->size > rp->re_len)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* The caller checked to see if it was just right, so we know it's
|
|
* short. Pad it out. We use the record data return memory, it's
|
|
* only a short-term use.
|
|
*/
|
|
if (dbc->rdata.ulen < rp->re_len) {
|
|
if ((ret = __os_realloc(&dbc->rdata.data, rp->re_len)) != 0) {
|
|
dbc->rdata.ulen = 0;
|
|
dbc->rdata.data = NULL;
|
|
return (ret);
|
|
}
|
|
dbc->rdata.ulen = rp->re_len;
|
|
}
|
|
memcpy(dbc->rdata.data, dbt->data, dbt->size);
|
|
memset((u_int8_t *)dbc->rdata.data + dbt->size,
|
|
rp->re_pad, rp->re_len - dbt->size);
|
|
|
|
/*
|
|
* Clean up our flags and other information just in case, and
|
|
* change the caller's DBT to reference our created record.
|
|
*/
|
|
dbc->rdata.size = rp->re_len;
|
|
dbc->rdata.dlen = 0;
|
|
dbc->rdata.doff = 0;
|
|
dbc->rdata.flags = 0;
|
|
*dbt = dbc->rdata;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* __bam_partial --
|
|
* Build the real record for a partial put.
|
|
*/
|
|
static int
|
|
__bam_partial(dbc, dbt, h, indx, nbytes, flags)
|
|
DBC *dbc;
|
|
DBT *dbt;
|
|
PAGE *h;
|
|
u_int32_t indx, nbytes, flags;
|
|
{
|
|
BKEYDATA *bk, tbk;
|
|
BOVERFLOW *bo;
|
|
DB *dbp;
|
|
DBT copy;
|
|
u_int32_t len, tlen;
|
|
u_int8_t *p;
|
|
int ret;
|
|
|
|
COMPQUIET(bo, NULL);
|
|
|
|
dbp = dbc->dbp;
|
|
|
|
/* We use the record data return memory, it's only a short-term use. */
|
|
if (dbc->rdata.ulen < nbytes) {
|
|
if ((ret = __os_realloc(&dbc->rdata.data, nbytes)) != 0) {
|
|
dbc->rdata.ulen = 0;
|
|
dbc->rdata.data = NULL;
|
|
return (ret);
|
|
}
|
|
dbc->rdata.ulen = nbytes;
|
|
}
|
|
|
|
/*
|
|
* We use nul bytes for any part of the record that isn't specified;
|
|
* get it over with.
|
|
*/
|
|
memset(dbc->rdata.data, 0, nbytes);
|
|
|
|
/*
|
|
* In the next clauses, we need to do three things: a) set p to point
|
|
* to the place at which to copy the user's data, b) set tlen to the
|
|
* total length of the record, not including the bytes contributed by
|
|
* the user, and c) copy any valid data from an existing record.
|
|
*/
|
|
if (LF_ISSET(BI_NEWKEY)) {
|
|
tlen = dbt->doff;
|
|
p = (u_int8_t *)dbc->rdata.data + dbt->doff;
|
|
goto ucopy;
|
|
}
|
|
|
|
/* Find the current record. */
|
|
if (indx < NUM_ENT(h)) {
|
|
bk = GET_BKEYDATA(h, indx + (TYPE(h) == P_LBTREE ? O_INDX : 0));
|
|
bo = (BOVERFLOW *)bk;
|
|
} else {
|
|
bk = &tbk;
|
|
B_TSET(bk->type, B_KEYDATA, 0);
|
|
bk->len = 0;
|
|
}
|
|
if (B_TYPE(bk->type) == B_OVERFLOW) {
|
|
/*
|
|
* In the case of an overflow record, we shift things around
|
|
* in the current record rather than allocate a separate copy.
|
|
*/
|
|
memset(©, 0, sizeof(copy));
|
|
if ((ret = __db_goff(dbp, ©, bo->tlen,
|
|
bo->pgno, &dbc->rdata.data, &dbc->rdata.ulen)) != 0)
|
|
return (ret);
|
|
|
|
/* Skip any leading data from the original record. */
|
|
tlen = dbt->doff;
|
|
p = (u_int8_t *)dbc->rdata.data + dbt->doff;
|
|
|
|
/*
|
|
* Copy in any trailing data from the original record.
|
|
*
|
|
* If the original record was larger than the original offset
|
|
* plus the bytes being deleted, there is trailing data in the
|
|
* original record we need to preserve. If we aren't deleting
|
|
* the same number of bytes as we're inserting, copy it up or
|
|
* down, into place.
|
|
*
|
|
* Use memmove(), the regions may overlap.
|
|
*/
|
|
if (bo->tlen > dbt->doff + dbt->dlen) {
|
|
len = bo->tlen - (dbt->doff + dbt->dlen);
|
|
if (dbt->dlen != dbt->size)
|
|
memmove(p + dbt->size, p + dbt->dlen, len);
|
|
tlen += len;
|
|
}
|
|
} else {
|
|
/* Copy in any leading data from the original record. */
|
|
memcpy(dbc->rdata.data,
|
|
bk->data, dbt->doff > bk->len ? bk->len : dbt->doff);
|
|
tlen = dbt->doff;
|
|
p = (u_int8_t *)dbc->rdata.data + dbt->doff;
|
|
|
|
/* Copy in any trailing data from the original record. */
|
|
len = dbt->doff + dbt->dlen;
|
|
if (bk->len > len) {
|
|
memcpy(p + dbt->size, bk->data + len, bk->len - len);
|
|
tlen += bk->len - len;
|
|
}
|
|
}
|
|
|
|
ucopy: /*
|
|
* Copy in the application provided data -- p and tlen must have been
|
|
* initialized above.
|
|
*/
|
|
memcpy(p, dbt->data, dbt->size);
|
|
tlen += dbt->size;
|
|
|
|
/* Set the DBT to reference our new record. */
|
|
dbc->rdata.size = tlen;
|
|
dbc->rdata.dlen = 0;
|
|
dbc->rdata.doff = 0;
|
|
dbc->rdata.flags = 0;
|
|
*dbt = dbc->rdata;
|
|
return (0);
|
|
}
|