mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-20 01:40:26 +00:00
2d09b95d5a
1998-09-13 18:04 Geoff Keating <geoffk@ozemail.com.au> * sysdeps/powerpc/dl-machine.c (PPC_DCBST,PPC_SYNC,PPC_ISYNC,PPC_ICBI): Don't mark asm `volatile'. (__elf_machine_runtime_setup): Clear the last partial block in the PLT from the data cache too. Assume it isn't in the instruction cache yet. (__elf_machine_fixup_plt): Clear the modified address from the caches.
447 lines
15 KiB
C
447 lines
15 KiB
C
/* Machine-dependent ELF dynamic relocation functions. PowerPC version.
|
|
Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <sys/param.h>
|
|
#include <link.h>
|
|
#include <dl-machine.h>
|
|
#include <elf/ldsodefs.h>
|
|
#include <elf/dynamic-link.h>
|
|
|
|
/* Because ld.so is now versioned, these functions can be in their own file;
|
|
no relocations need to be done to call them.
|
|
Of course, if ld.so is not versioned... */
|
|
#if !(DO_VERSIONING - 0)
|
|
#error This will not work with versioning turned off, sorry.
|
|
#endif
|
|
|
|
|
|
/* stuff for the PLT */
|
|
#define PLT_INITIAL_ENTRY_WORDS 18
|
|
#define PLT_LONGBRANCH_ENTRY_WORDS 10
|
|
#define PLT_DOUBLE_SIZE (1<<13)
|
|
#define PLT_ENTRY_START_WORDS(entry_number) \
|
|
(PLT_INITIAL_ENTRY_WORDS + (entry_number)*2 + \
|
|
((entry_number) > PLT_DOUBLE_SIZE ? \
|
|
((entry_number) - PLT_DOUBLE_SIZE)*2 : \
|
|
0))
|
|
#define PLT_DATA_START_WORDS(num_entries) PLT_ENTRY_START_WORDS(num_entries)
|
|
|
|
#define OPCODE_ADDI(rd,ra,simm) \
|
|
(0x38000000 | (rd) << 21 | (ra) << 16 | (simm) & 0xffff)
|
|
#define OPCODE_ADDIS(rd,ra,simm) \
|
|
(0x3c000000 | (rd) << 21 | (ra) << 16 | (simm) & 0xffff)
|
|
#define OPCODE_ADD(rd,ra,rb) \
|
|
(0x7c000214 | (rd) << 21 | (ra) << 16 | (rb) << 11)
|
|
#define OPCODE_B(target) (0x48000000 | (target) & 0x03fffffc)
|
|
#define OPCODE_BA(target) (0x48000002 | (target) & 0x03fffffc)
|
|
#define OPCODE_BCTR() 0x4e800420
|
|
#define OPCODE_LWZ(rd,d,ra) \
|
|
(0x80000000 | (rd) << 21 | (ra) << 16 | (d) & 0xffff)
|
|
#define OPCODE_MTCTR(rd) (0x7C0903A6 | (rd) << 21)
|
|
#define OPCODE_RLWINM(ra,rs,sh,mb,me) \
|
|
(0x54000000 | (rs) << 21 | (ra) << 16 | (sh) << 11 | (mb) << 6 | (me) << 1)
|
|
|
|
#define OPCODE_LI(rd,simm) OPCODE_ADDI(rd,0,simm)
|
|
#define OPCODE_SLWI(ra,rs,sh) OPCODE_RLWINM(ra,rs,sh,0,31-sh)
|
|
|
|
|
|
#define PPC_DCBST(where) asm ("dcbst 0,%0" : : "r"(where) : "memory")
|
|
#define PPC_SYNC asm ("sync" : : : "memory")
|
|
#define PPC_ISYNC asm volatile ("sync; isync" : : : "memory")
|
|
#define PPC_ICBI(where) asm ("icbi 0,%0" : : "r"(where) : "memory")
|
|
#define PPC_DIE asm volatile ("tweq 0,0")
|
|
|
|
/* Use this when you've modified some code, but it won't be in the
|
|
instruction fetch queue (or when it doesn't matter if it is). */
|
|
#define MODIFIED_CODE_NOQUEUE(where) \
|
|
do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); } while (0)
|
|
/* Use this when it might be in the instruction queue. */
|
|
#define MODIFIED_CODE(where) \
|
|
do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); PPC_ISYNC; } while (0)
|
|
|
|
|
|
/* The idea here is that to conform to the ABI, we are supposed to try
|
|
to load dynamic objects between 0x10000 (we actually use 0x40000 as
|
|
the lower bound, to increase the chance of a memory reference from
|
|
a null pointer giving a segfault) and the program's load address;
|
|
this may allow us to use a branch instruction in the PLT rather
|
|
than a computed jump. The address is only used as a preference for
|
|
mmap, so if we get it wrong the worst that happens is that it gets
|
|
mapped somewhere else. */
|
|
|
|
ElfW(Addr)
|
|
__elf_preferred_address(struct link_map *loader, size_t maplength,
|
|
ElfW(Addr) mapstartpref)
|
|
{
|
|
ElfW(Addr) low, high;
|
|
struct link_map *l;
|
|
|
|
/* If the object has a preference, load it there! */
|
|
if (mapstartpref != 0)
|
|
return mapstartpref;
|
|
|
|
/* Otherwise, quickly look for a suitable gap between 0x3FFFF and
|
|
0x70000000. 0x3FFFF is so that references off NULL pointers will
|
|
cause a segfault, 0x70000000 is just paranoia (it should always
|
|
be superceded by the program's load address). */
|
|
low = 0x0003FFFF;
|
|
high = 0x70000000;
|
|
for (l = _dl_loaded; l; l = l->l_next)
|
|
{
|
|
ElfW(Addr) mapstart, mapend;
|
|
mapstart = l->l_map_start & ~(_dl_pagesize - 1);
|
|
mapend = l->l_map_end | (_dl_pagesize - 1);
|
|
assert (mapend > mapstart);
|
|
|
|
if (mapend >= high && high >= mapstart)
|
|
high = mapstart;
|
|
else if (mapend >= low && low >= mapstart)
|
|
low = mapend;
|
|
else if (high >= mapend && mapstart >= low)
|
|
{
|
|
if (high - mapend >= mapstart - low)
|
|
low = mapend;
|
|
else
|
|
high = mapstart;
|
|
}
|
|
}
|
|
|
|
high -= 0x10000; /* Allow some room between objects. */
|
|
maplength = (maplength | (_dl_pagesize-1)) + 1;
|
|
if (high <= low || high - low < maplength )
|
|
return 0;
|
|
return high - maplength; /* Both high and maplength are page-aligned. */
|
|
}
|
|
|
|
/* Set up the loaded object described by L so its unrelocated PLT
|
|
entries will jump to the on-demand fixup code in dl-runtime.c.
|
|
Also install a small trampoline to be used by entries that have
|
|
been relocated to an address too far away for a single branch. */
|
|
|
|
/* A PLT entry does one of three things:
|
|
(i) Jumps to the actual routine. Such entries are set up above, in
|
|
elf_machine_rela.
|
|
|
|
(ii) Jumps to the actual routine via glue at the start of the PLT.
|
|
We do this by putting the address of the routine in space
|
|
allocated at the end of the PLT, and when the PLT entry is
|
|
called we load the offset of that word (from the start of the
|
|
space) into r11, then call the glue, which loads the word and
|
|
branches to that address. These entries are set up in
|
|
elf_machine_rela, but the glue is set up here.
|
|
|
|
(iii) Loads the index of this PLT entry (we count the double-size
|
|
entries as one entry for this purpose) into r11, then
|
|
branches to code at the start of the PLT. This code then
|
|
calls `fixup', in dl-runtime.c, via the glue in the macro
|
|
ELF_MACHINE_RUNTIME_TRAMPOLINE, which resets the PLT entry to
|
|
be one of the above two types. These entries are set up here. */
|
|
int
|
|
__elf_machine_runtime_setup (struct link_map *map, int lazy, int profile)
|
|
{
|
|
if (map->l_info[DT_JMPREL])
|
|
{
|
|
Elf32_Word i;
|
|
/* Fill in the PLT. Its initial contents are directed to a
|
|
function earlier in the PLT which arranges for the dynamic
|
|
linker to be called back. */
|
|
Elf32_Word *plt = (Elf32_Word *) ((char *) map->l_addr
|
|
+ map->l_info[DT_PLTGOT]->d_un.d_val);
|
|
Elf32_Word num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
|
|
/ sizeof (Elf32_Rela));
|
|
Elf32_Word rel_offset_words = PLT_DATA_START_WORDS (num_plt_entries);
|
|
Elf32_Word size_modified;
|
|
extern void _dl_runtime_resolve (void);
|
|
extern void _dl_prof_resolve (void);
|
|
Elf32_Word dlrr;
|
|
|
|
dlrr = (Elf32_Word)(char *)(profile
|
|
? _dl_prof_resolve
|
|
: _dl_runtime_resolve);
|
|
|
|
if (lazy)
|
|
for (i = 0; i < num_plt_entries; i++)
|
|
{
|
|
Elf32_Word offset = PLT_ENTRY_START_WORDS (i);
|
|
|
|
if (i >= PLT_DOUBLE_SIZE)
|
|
{
|
|
plt[offset ] = OPCODE_LI (11, i * 4);
|
|
plt[offset+1] = OPCODE_ADDIS (11, 11, (i * 4 + 0x8000) >> 16);
|
|
plt[offset+2] = OPCODE_B (-(4 * (offset + 2)));
|
|
}
|
|
else
|
|
{
|
|
plt[offset ] = OPCODE_LI (11, i * 4);
|
|
plt[offset+1] = OPCODE_B (-(4 * (offset + 1)));
|
|
}
|
|
}
|
|
|
|
/* Multiply index of entry by 3 (in r11). */
|
|
plt[0] = OPCODE_SLWI (12, 11, 1);
|
|
plt[1] = OPCODE_ADD (11, 12, 11);
|
|
if (dlrr <= 0x01fffffc || dlrr >= 0xfe000000)
|
|
{
|
|
/* Load address of link map in r12. */
|
|
plt[2] = OPCODE_LI (12, (Elf32_Word) (char *) map);
|
|
plt[3] = OPCODE_ADDIS (12, 12, (((Elf32_Word) (char *) map
|
|
+ 0x8000) >> 16));
|
|
|
|
/* Call _dl_runtime_resolve. */
|
|
plt[4] = OPCODE_BA (dlrr);
|
|
}
|
|
else
|
|
{
|
|
/* Get address of _dl_runtime_resolve in CTR. */
|
|
plt[2] = OPCODE_LI (12, dlrr);
|
|
plt[3] = OPCODE_ADDIS (12, 12, (dlrr + 0x8000) >> 16);
|
|
plt[4] = OPCODE_MTCTR (12);
|
|
|
|
/* Load address of link map in r12. */
|
|
plt[5] = OPCODE_LI (12, (Elf32_Word) (char *) map);
|
|
plt[6] = OPCODE_ADDIS (12, 12, (((Elf32_Word) (char *) map
|
|
+ 0x8000) >> 16));
|
|
|
|
/* Call _dl_runtime_resolve. */
|
|
plt[7] = OPCODE_BCTR ();
|
|
}
|
|
|
|
|
|
/* Convert the index in r11 into an actual address, and get the
|
|
word at that address. */
|
|
plt[PLT_LONGBRANCH_ENTRY_WORDS] =
|
|
OPCODE_ADDIS (11, 11, (((Elf32_Word) (char*) (plt + rel_offset_words)
|
|
+ 0x8000) >> 16));
|
|
plt[PLT_LONGBRANCH_ENTRY_WORDS+1] =
|
|
OPCODE_LWZ (11, (Elf32_Word) (char*) (plt+rel_offset_words), 11);
|
|
|
|
/* Call the procedure at that address. */
|
|
plt[PLT_LONGBRANCH_ENTRY_WORDS+2] = OPCODE_MTCTR (11);
|
|
plt[PLT_LONGBRANCH_ENTRY_WORDS+3] = OPCODE_BCTR ();
|
|
|
|
|
|
/* Now, we've modified code (quite a lot of code, possibly). We
|
|
need to write the changes from the data cache to a
|
|
second-level unified cache, then make sure that stale data in
|
|
the instruction cache is removed. (In a multiprocessor
|
|
system, the effect is more complex.) Most of the PLT shouldn't
|
|
be in the instruction cache, but there may be a little overlap
|
|
at the start and the end.
|
|
|
|
Assumes the cache line size is at least 32 bytes, or at least
|
|
that dcbst and icbi apply to 32-byte lines. At present, all
|
|
PowerPC processors have line sizes of exactly 32 bytes. */
|
|
|
|
size_modified = lazy ? rel_offset_words : PLT_INITIAL_ENTRY_WORDS;
|
|
for (i = 0; i < size_modified; i+=8)
|
|
PPC_DCBST (plt + i);
|
|
PPC_DCBST (plt + size_modified-1);
|
|
PPC_SYNC;
|
|
PPC_ICBI (plt);
|
|
PPC_ICBI (plt + size_modified-1);
|
|
PPC_ISYNC;
|
|
}
|
|
|
|
return lazy;
|
|
}
|
|
|
|
void
|
|
__elf_machine_fixup_plt(struct link_map *map, const Elf32_Rela *reloc,
|
|
Elf32_Addr *reloc_addr, Elf32_Addr finaladdr)
|
|
{
|
|
Elf32_Sword delta = finaladdr - (Elf32_Word) (char *) reloc_addr;
|
|
if (delta << 6 >> 6 == delta)
|
|
*reloc_addr = OPCODE_B (delta);
|
|
else if (finaladdr <= 0x01fffffc || finaladdr >= 0xfe000000)
|
|
*reloc_addr = OPCODE_BA (finaladdr);
|
|
else
|
|
{
|
|
Elf32_Word *plt;
|
|
Elf32_Word index;
|
|
|
|
plt = (Elf32_Word *)((char *)map->l_addr
|
|
+ map->l_info[DT_PLTGOT]->d_un.d_val);
|
|
index = (reloc_addr - plt - PLT_INITIAL_ENTRY_WORDS)/2;
|
|
if (index >= PLT_DOUBLE_SIZE)
|
|
{
|
|
/* Slots greater than or equal to 2^13 have 4 words available
|
|
instead of two. */
|
|
/* FIXME: There are some possible race conditions in this code,
|
|
when called from 'fixup'.
|
|
|
|
1) Suppose that a lazy PLT entry is executing, a context switch
|
|
between threads (or a signal) occurs, and the new thread or
|
|
signal handler calls the same lazy PLT entry. Then the PLT entry
|
|
would be changed while it's being run, which will cause a segfault
|
|
(almost always).
|
|
|
|
2) Suppose the reverse: that a lazy PLT entry is being updated,
|
|
a context switch occurs, and the new code calls the lazy PLT
|
|
entry that is being updated. Then the half-fixed PLT entry will
|
|
be executed, which will also almost always cause a segfault.
|
|
|
|
These problems don't happen with the 2-word entries, because
|
|
only one of the two instructions are changed when a lazy entry
|
|
is retargeted at the actual PLT entry; the li instruction stays
|
|
the same (we have to update it anyway, because we might not be
|
|
updating a lazy PLT entry). */
|
|
|
|
reloc_addr[0] = OPCODE_LI (11, finaladdr);
|
|
reloc_addr[1] = OPCODE_ADDIS (11, 11, finaladdr + 0x8000 >> 16);
|
|
reloc_addr[2] = OPCODE_MTCTR (11);
|
|
reloc_addr[3] = OPCODE_BCTR ();
|
|
}
|
|
else
|
|
{
|
|
Elf32_Word num_plt_entries;
|
|
|
|
num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
|
|
/ sizeof(Elf32_Rela));
|
|
|
|
plt[index+PLT_DATA_START_WORDS (num_plt_entries)] = finaladdr;
|
|
reloc_addr[0] = OPCODE_LI (11, index*4);
|
|
reloc_addr[1] = OPCODE_B (-(4*(index*2
|
|
+ 1
|
|
- PLT_LONGBRANCH_ENTRY_WORDS
|
|
+ PLT_INITIAL_ENTRY_WORDS)));
|
|
reloc_addr += 1; /* This is the modified address. */
|
|
}
|
|
}
|
|
MODIFIED_CODE (reloc_addr);
|
|
}
|
|
|
|
void
|
|
__process_machine_rela (struct link_map *map,
|
|
const Elf32_Rela *reloc,
|
|
const Elf32_Sym *sym,
|
|
const Elf32_Sym *refsym,
|
|
Elf32_Addr *const reloc_addr,
|
|
Elf32_Addr const finaladdr,
|
|
int rinfo)
|
|
{
|
|
switch (rinfo)
|
|
{
|
|
case R_PPC_NONE:
|
|
return;
|
|
|
|
case R_PPC_ADDR32:
|
|
case R_PPC_UADDR32:
|
|
case R_PPC_GLOB_DAT:
|
|
case R_PPC_RELATIVE:
|
|
*reloc_addr = finaladdr;
|
|
return;
|
|
|
|
case R_PPC_ADDR24:
|
|
if (finaladdr > 0x01fffffc && finaladdr < 0xfe000000)
|
|
{
|
|
_dl_signal_error(0, map->l_name,
|
|
"R_PPC_ADDR24 relocation out of range");
|
|
}
|
|
*reloc_addr = *reloc_addr & 0xfc000003 | finaladdr & 0x3fffffc;
|
|
break;
|
|
|
|
case R_PPC_ADDR16:
|
|
case R_PPC_UADDR16:
|
|
if (finaladdr > 0x7fff && finaladdr < 0x8000)
|
|
{
|
|
_dl_signal_error(0, map->l_name,
|
|
"R_PPC_ADDR16 relocation out of range");
|
|
}
|
|
*(Elf32_Half*) reloc_addr = finaladdr;
|
|
break;
|
|
|
|
case R_PPC_ADDR16_LO:
|
|
*(Elf32_Half*) reloc_addr = finaladdr;
|
|
break;
|
|
|
|
case R_PPC_ADDR16_HI:
|
|
*(Elf32_Half*) reloc_addr = finaladdr >> 16;
|
|
break;
|
|
|
|
case R_PPC_ADDR16_HA:
|
|
*(Elf32_Half*) reloc_addr = (finaladdr + 0x8000) >> 16;
|
|
break;
|
|
|
|
case R_PPC_ADDR14:
|
|
case R_PPC_ADDR14_BRTAKEN:
|
|
case R_PPC_ADDR14_BRNTAKEN:
|
|
if (finaladdr > 0x7fff && finaladdr < 0x8000)
|
|
{
|
|
_dl_signal_error(0, map->l_name,
|
|
"R_PPC_ADDR14 relocation out of range");
|
|
}
|
|
*reloc_addr = *reloc_addr & 0xffff0003 | finaladdr & 0xfffc;
|
|
if (rinfo != R_PPC_ADDR14)
|
|
*reloc_addr = (*reloc_addr & 0xffdfffff
|
|
| (rinfo == R_PPC_ADDR14_BRTAKEN
|
|
^ finaladdr >> 31) << 21);
|
|
break;
|
|
|
|
case R_PPC_REL24:
|
|
{
|
|
Elf32_Sword delta = finaladdr - (Elf32_Word) (char *) reloc_addr;
|
|
if (delta << 6 >> 6 != delta)
|
|
{
|
|
_dl_signal_error(0, map->l_name,
|
|
"R_PPC_REL24 relocation out of range");
|
|
}
|
|
*reloc_addr = *reloc_addr & 0xfc000003 | delta & 0x3fffffc;
|
|
}
|
|
break;
|
|
|
|
case R_PPC_COPY:
|
|
if (sym == NULL)
|
|
/* This can happen in trace mode when an object could not be
|
|
found. */
|
|
return;
|
|
if (sym->st_size > refsym->st_size
|
|
|| (_dl_verbose && sym->st_size < refsym->st_size))
|
|
{
|
|
const char *strtab;
|
|
|
|
strtab = ((void *) map->l_addr
|
|
+ map->l_info[DT_STRTAB]->d_un.d_ptr);
|
|
_dl_sysdep_error (_dl_argv[0] ?: "<program name unknown>",
|
|
": Symbol `", strtab + refsym->st_name,
|
|
"' has different size in shared object, "
|
|
"consider re-linking\n", NULL);
|
|
}
|
|
memcpy (reloc_addr, (char *) finaladdr, MIN (sym->st_size,
|
|
refsym->st_size));
|
|
return;
|
|
|
|
case R_PPC_REL32:
|
|
*reloc_addr = finaladdr - (Elf32_Word) (char *) reloc_addr;
|
|
return;
|
|
|
|
case R_PPC_JMP_SLOT:
|
|
elf_machine_fixup_plt(map, reloc, reloc_addr, finaladdr);
|
|
return;
|
|
|
|
default:
|
|
_dl_sysdep_error (_dl_argv[0] ?: "<program name unknown>",
|
|
": Unknown relocation type\n", NULL);
|
|
return;
|
|
}
|
|
|
|
MODIFIED_CODE_NOQUEUE (reloc_addr);
|
|
}
|