mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-15 05:20:05 +00:00
1e2bffd05c
Continuing the move of libm aliases to common macros that can create _FloatN / _FloatNx aliases in future, this patch converts some dbl-64 functions to using libm_alias_double, thereby eliminating the need for some ldbl-opt wrappers. This patch deliberately limits what functions are converted so that it can be verified by comparison of stipped binaries. Specifically, atan and tan are excluded because they first need converting to being weak aliases; fma is omitted as it has additional complications with versions in other directories (removing the ldbl-opt version can e.g. cause the ldbl-128 version to be used instead of dbl-64); and functions that have both dbl-64/wordsize-64 and ldbl-opt versions are excluded because ldbl-opt currently always wraps dbl-64 function versions, so changing those will result in platforms using both ldbl-opt and dbl-64/wordsize-64 (i.e. alpha) starting to use the dbl-64/wordsize-64 versions of those functions (which is good, as an optimization, but still best separated from the present patch to get better validation). Tested for x86_64, and tested with build-many-glibcs.py that installed stripped shared libraries are unchanged by the patch. * sysdeps/ieee754/dbl-64/s_asinh.c: Include <libm-alias-double.h>. (asinh): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_cbrt.c: Include <libm-alias-double.h>. (cbrt): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_copysign.c: Include <libm-alias-double.h>. (copysign): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_erf.c: Include <libm-alias-double.h>. (erf): Define using libm_alias_double. (erfc): Likewise. * sysdeps/ieee754/dbl-64/s_expm1.c: Include <libm-alias-double.h>. (expm1): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_fabs.c: Include <libm-alias-double.h>. (fabs): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_fromfp.c (fromfp): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_fromfp_main.c: Include <libm-alias-double.h>. * sysdeps/ieee754/dbl-64/s_fromfpx.c (fromfpx): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_getpayload.c: Include <libm-alias-double.h>. (getpayload): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_llrint.c: Include <libm-alias-double.h>. (llrint): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_lrint.c: Include <libm-alias-double.h>. (lrint): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_nextup.c: Include <libm-alias-double.h>. (nextup): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_roundeven.c: Include <libm-alias-double.h>. (roundeven): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_setpayload.c (setpayload): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_setpayload_main.c: Include <libm-alias-double.h>. * sysdeps/ieee754/dbl-64/s_setpayloadsig.c (setpayloadsig): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_sin.c: Include <libm-alias-double.h>. (cos): Define using libm_alias_double. (sin): Likewise. * sysdeps/ieee754/dbl-64/s_sincos.c: Include <libm-alias-double.h>. (sincos): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_tanh.c: Include <libm-alias-double.h>. (tanh): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_totalorder.c: Include <libm-alias-double.h>. (totalorder): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_totalordermag.c: Include <libm-alias-double.h>. (totalordermag): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_ufromfp.c (ufromfp): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/s_ufromfpx.c (ufromfpx): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/wordsize-64/s_getpayload.c: Include <libm-alias-double.h>. (getpayload): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/wordsize-64/s_roundeven.c: Include <libm-alias-double.h>. (roundeven): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/wordsize-64/s_setpayload_main.c: Include <libm-alias-double.h>. * sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include <libm-alias-double.h>. (totalorder): Define using libm_alias_double. * sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include <libm-alias-double.h>. (totalordermag): Define using libm_alias_double. * sysdeps/ieee754/ldbl-opt/s_copysign.c (copysignl): Only define libc compat symbol here. * sysdeps/ieee754/ldbl-opt/s_asinh.c: Remove file. * sysdeps/ieee754/ldbl-opt/s_cbrt.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_erf.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_expm1.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_fabs.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_llrint.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_lrint.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_sin.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_sincos.c: Likewise. * sysdeps/ieee754/ldbl-opt/s_tanh.c: Likewise.
921 lines
26 KiB
C
921 lines
26 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/****************************************************************************/
|
|
/* */
|
|
/* MODULE_NAME:usncs.c */
|
|
/* */
|
|
/* FUNCTIONS: usin */
|
|
/* ucos */
|
|
/* slow */
|
|
/* slow1 */
|
|
/* slow2 */
|
|
/* sloww */
|
|
/* sloww1 */
|
|
/* sloww2 */
|
|
/* bsloww */
|
|
/* bsloww1 */
|
|
/* bsloww2 */
|
|
/* cslow2 */
|
|
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */
|
|
/* branred.c sincos32.c dosincos.c mpa.c */
|
|
/* sincos.tbl */
|
|
/* */
|
|
/* An ultimate sin and routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/****************************************************************************/
|
|
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include "endian.h"
|
|
#include "mydefs.h"
|
|
#include "usncs.h"
|
|
#include "MathLib.h"
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <libm-alias-double.h>
|
|
#include <fenv.h>
|
|
|
|
/* Helper macros to compute sin of the input values. */
|
|
#define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx))
|
|
|
|
#define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1)
|
|
|
|
/* The computed polynomial is a variation of the Taylor series expansion for
|
|
sin(a):
|
|
|
|
a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2
|
|
|
|
The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so
|
|
on. The result is returned to LHS and correction in COR. */
|
|
#define TAYLOR_SIN(xx, a, da, cor) \
|
|
({ \
|
|
double t = ((POLYNOMIAL (xx) * (a) - 0.5 * (da)) * (xx) + (da)); \
|
|
double res = (a) + t; \
|
|
(cor) = ((a) - res) + t; \
|
|
res; \
|
|
})
|
|
|
|
/* This is again a variation of the Taylor series expansion with the term
|
|
x^3/3! expanded into the following for better accuracy:
|
|
|
|
bb * x ^ 3 + 3 * aa * x * x1 * x2 + aa * x1 ^ 3 + aa * x2 ^ 3
|
|
|
|
The correction term is dx and bb + aa = -1/3!
|
|
*/
|
|
#define TAYLOR_SLOW(x0, dx, cor) \
|
|
({ \
|
|
static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ \
|
|
double xx = (x0) * (x0); \
|
|
double x1 = ((x0) + th2_36) - th2_36; \
|
|
double y = aa * x1 * x1 * x1; \
|
|
double r = (x0) + y; \
|
|
double x2 = ((x0) - x1) + (dx); \
|
|
double t = (((POLYNOMIAL2 (xx) + bb) * xx + 3.0 * aa * x1 * x2) \
|
|
* (x0) + aa * x2 * x2 * x2 + (dx)); \
|
|
t = (((x0) - r) + y) + t; \
|
|
double res = r + t; \
|
|
(cor) = (r - res) + t; \
|
|
res; \
|
|
})
|
|
|
|
#define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \
|
|
({ \
|
|
int4 k = u.i[LOW_HALF] << 2; \
|
|
sn = __sincostab.x[k]; \
|
|
ssn = __sincostab.x[k + 1]; \
|
|
cs = __sincostab.x[k + 2]; \
|
|
ccs = __sincostab.x[k + 3]; \
|
|
})
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
extern const union
|
|
{
|
|
int4 i[880];
|
|
double x[440];
|
|
} __sincostab attribute_hidden;
|
|
|
|
static const double
|
|
sn3 = -1.66666666666664880952546298448555E-01,
|
|
sn5 = 8.33333214285722277379541354343671E-03,
|
|
cs2 = 4.99999999999999999999950396842453E-01,
|
|
cs4 = -4.16666666666664434524222570944589E-02,
|
|
cs6 = 1.38888874007937613028114285595617E-03;
|
|
|
|
static const double t22 = 0x1.8p22;
|
|
|
|
void __dubsin (double x, double dx, double w[]);
|
|
void __docos (double x, double dx, double w[]);
|
|
double __mpsin (double x, double dx, bool reduce_range);
|
|
double __mpcos (double x, double dx, bool reduce_range);
|
|
static double slow (double x);
|
|
static double slow1 (double x);
|
|
static double slow2 (double x);
|
|
static double sloww (double x, double dx, double orig, bool shift_quadrant);
|
|
static double sloww1 (double x, double dx, double orig, bool shift_quadrant);
|
|
static double sloww2 (double x, double dx, double orig, int n);
|
|
static double bsloww (double x, double dx, double orig, int n);
|
|
static double bsloww1 (double x, double dx, double orig, int n);
|
|
static double bsloww2 (double x, double dx, double orig, int n);
|
|
int __branred (double x, double *a, double *aa);
|
|
static double cslow2 (double x);
|
|
|
|
/* Given a number partitioned into X and DX, this function computes the cosine
|
|
of the number by combining the sin and cos of X (as computed by a variation
|
|
of the Taylor series) with the values looked up from the sin/cos table to
|
|
get the result in RES and a correction value in COR. */
|
|
static inline double
|
|
__always_inline
|
|
do_cos (double x, double dx, double *corp)
|
|
{
|
|
mynumber u;
|
|
|
|
if (x < 0)
|
|
dx = -dx;
|
|
|
|
u.x = big + fabs (x);
|
|
x = fabs (x) - (u.x - big) + dx;
|
|
|
|
double xx, s, sn, ssn, c, cs, ccs, res, cor;
|
|
xx = x * x;
|
|
s = x + x * xx * (sn3 + xx * sn5);
|
|
c = xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
cor = (ccs - s * ssn - cs * c) - sn * s;
|
|
res = cs + cor;
|
|
cor = (cs - res) + cor;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* A more precise variant of DO_COS. EPS is the adjustment to the correction
|
|
COR. */
|
|
static inline double
|
|
__always_inline
|
|
do_cos_slow (double x, double dx, double eps, double *corp)
|
|
{
|
|
mynumber u;
|
|
|
|
if (x <= 0)
|
|
dx = -dx;
|
|
|
|
u.x = big + fabs (x);
|
|
x = fabs (x) - (u.x - big);
|
|
|
|
double xx, y, x1, x2, e1, e2, res, cor;
|
|
double s, sn, ssn, c, cs, ccs;
|
|
xx = x * x;
|
|
s = x * xx * (sn3 + xx * sn5);
|
|
c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
x1 = (x + t22) - t22;
|
|
x2 = (x - x1) + dx;
|
|
e1 = (sn + t22) - t22;
|
|
e2 = (sn - e1) + ssn;
|
|
cor = (ccs - cs * c - e1 * x2 - e2 * x) - sn * s;
|
|
y = cs - e1 * x1;
|
|
cor = cor + ((cs - y) - e1 * x1);
|
|
res = y + cor;
|
|
cor = (y - res) + cor;
|
|
cor = 1.0005 * cor + __copysign (eps, cor);
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* Given a number partitioned into X and DX, this function computes the sine of
|
|
the number by combining the sin and cos of X (as computed by a variation of
|
|
the Taylor series) with the values looked up from the sin/cos table to get
|
|
the result in RES and a correction value in COR. */
|
|
static inline double
|
|
__always_inline
|
|
do_sin (double x, double dx, double *corp)
|
|
{
|
|
mynumber u;
|
|
|
|
if (x <= 0)
|
|
dx = -dx;
|
|
u.x = big + fabs (x);
|
|
x = fabs (x) - (u.x - big);
|
|
|
|
double xx, s, sn, ssn, c, cs, ccs, cor, res;
|
|
xx = x * x;
|
|
s = x + (dx + x * xx * (sn3 + xx * sn5));
|
|
c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
cor = (ssn + s * ccs - sn * c) + cs * s;
|
|
res = sn + cor;
|
|
cor = (sn - res) + cor;
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* A more precise variant of DO_SIN. EPS is the adjustment to the correction
|
|
COR. */
|
|
static inline double
|
|
__always_inline
|
|
do_sin_slow (double x, double dx, double eps, double *corp)
|
|
{
|
|
mynumber u;
|
|
|
|
if (x <= 0)
|
|
dx = -dx;
|
|
u.x = big + fabs (x);
|
|
x = fabs (x) - (u.x - big);
|
|
|
|
double xx, y, x1, x2, c1, c2, res, cor;
|
|
double s, sn, ssn, c, cs, ccs;
|
|
xx = x * x;
|
|
s = x * xx * (sn3 + xx * sn5);
|
|
c = xx * (cs2 + xx * (cs4 + xx * cs6));
|
|
SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
|
|
x1 = (x + t22) - t22;
|
|
x2 = (x - x1) + dx;
|
|
c1 = (cs + t22) - t22;
|
|
c2 = (cs - c1) + ccs;
|
|
cor = (ssn + s * ccs + cs * s + c2 * x + c1 * x2 - sn * x * dx) - sn * c;
|
|
y = sn + c1 * x1;
|
|
cor = cor + ((sn - y) + c1 * x1);
|
|
res = y + cor;
|
|
cor = (y - res) + cor;
|
|
cor = 1.0005 * cor + __copysign (eps, cor);
|
|
*corp = cor;
|
|
return res;
|
|
}
|
|
|
|
/* Reduce range of X and compute sin of a + da. When SHIFT_QUADRANT is true,
|
|
the routine returns the cosine of a + da by rotating the quadrant once and
|
|
computing the sine of the result. */
|
|
static inline double
|
|
__always_inline
|
|
reduce_and_compute (double x, bool shift_quadrant)
|
|
{
|
|
double retval = 0, a, da;
|
|
unsigned int n = __branred (x, &a, &da);
|
|
int4 k = (n + shift_quadrant) % 4;
|
|
switch (k)
|
|
{
|
|
case 2:
|
|
a = -a;
|
|
da = -da;
|
|
/* Fall through. */
|
|
case 0:
|
|
if (a * a < 0.01588)
|
|
retval = bsloww (a, da, x, n);
|
|
else
|
|
retval = bsloww1 (a, da, x, n);
|
|
break;
|
|
|
|
case 1:
|
|
case 3:
|
|
retval = bsloww2 (a, da, x, n);
|
|
break;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static inline int4
|
|
__always_inline
|
|
reduce_sincos_1 (double x, double *a, double *da)
|
|
{
|
|
mynumber v;
|
|
|
|
double t = (x * hpinv + toint);
|
|
double xn = t - toint;
|
|
v.x = t;
|
|
double y = (x - xn * mp1) - xn * mp2;
|
|
int4 n = v.i[LOW_HALF] & 3;
|
|
double db = xn * mp3;
|
|
double b = y - db;
|
|
db = (y - b) - db;
|
|
|
|
*a = b;
|
|
*da = db;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Compute sin (A + DA). cos can be computed by passing SHIFT_QUADRANT as
|
|
true, which results in shifting the quadrant N clockwise. */
|
|
static double
|
|
__always_inline
|
|
do_sincos_1 (double a, double da, double x, int4 n, bool shift_quadrant)
|
|
{
|
|
double xx, retval, res, cor;
|
|
double eps = fabs (x) * 1.2e-30;
|
|
|
|
int k1 = (n + shift_quadrant) & 3;
|
|
switch (k1)
|
|
{ /* quarter of unit circle */
|
|
case 2:
|
|
a = -a;
|
|
da = -da;
|
|
/* Fall through. */
|
|
case 0:
|
|
xx = a * a;
|
|
if (xx < 0.01588)
|
|
{
|
|
/* Taylor series. */
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = 1.02 * cor + __copysign (eps, cor);
|
|
retval = (res == res + cor) ? res : sloww (a, da, x, shift_quadrant);
|
|
}
|
|
else
|
|
{
|
|
res = do_sin (a, da, &cor);
|
|
cor = 1.035 * cor + __copysign (eps, cor);
|
|
retval = ((res == res + cor) ? __copysign (res, a)
|
|
: sloww1 (a, da, x, shift_quadrant));
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
case 3:
|
|
res = do_cos (a, da, &cor);
|
|
cor = 1.025 * cor + __copysign (eps, cor);
|
|
retval = ((res == res + cor) ? ((n & 2) ? -res : res)
|
|
: sloww2 (a, da, x, n));
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static inline int4
|
|
__always_inline
|
|
reduce_sincos_2 (double x, double *a, double *da)
|
|
{
|
|
mynumber v;
|
|
|
|
double t = (x * hpinv + toint);
|
|
double xn = t - toint;
|
|
v.x = t;
|
|
double xn1 = (xn + 8.0e22) - 8.0e22;
|
|
double xn2 = xn - xn1;
|
|
double y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
|
|
int4 n = v.i[LOW_HALF] & 3;
|
|
double db = xn1 * pp3;
|
|
t = y - db;
|
|
db = (y - t) - db;
|
|
db = (db - xn2 * pp3) - xn * pp4;
|
|
double b = t + db;
|
|
db = (t - b) + db;
|
|
|
|
*a = b;
|
|
*da = db;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Compute sin (A + DA). cos can be computed by passing SHIFT_QUADRANT as
|
|
true, which results in shifting the quadrant N clockwise. */
|
|
static double
|
|
__always_inline
|
|
do_sincos_2 (double a, double da, double x, int4 n, bool shift_quadrant)
|
|
{
|
|
double res, retval, cor, xx;
|
|
|
|
double eps = 1.0e-24;
|
|
|
|
int4 k = (n + shift_quadrant) & 3;
|
|
|
|
switch (k)
|
|
{
|
|
case 2:
|
|
a = -a;
|
|
da = -da;
|
|
/* Fall through. */
|
|
case 0:
|
|
xx = a * a;
|
|
if (xx < 0.01588)
|
|
{
|
|
/* Taylor series. */
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = 1.02 * cor + __copysign (eps, cor);
|
|
retval = (res == res + cor) ? res : bsloww (a, da, x, n);
|
|
}
|
|
else
|
|
{
|
|
res = do_sin (a, da, &cor);
|
|
cor = 1.035 * cor + __copysign (eps, cor);
|
|
retval = ((res == res + cor) ? __copysign (res, a)
|
|
: bsloww1 (a, da, x, n));
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
case 3:
|
|
res = do_cos (a, da, &cor);
|
|
cor = 1.025 * cor + __copysign (eps, cor);
|
|
retval = ((res == res + cor) ? ((n & 2) ? -res : res)
|
|
: bsloww2 (a, da, x, n));
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* An ultimate sin routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of sin(x) */
|
|
/*******************************************************************/
|
|
#ifdef IN_SINCOS
|
|
static double
|
|
#else
|
|
double
|
|
SECTION
|
|
#endif
|
|
__sin (double x)
|
|
{
|
|
double xx, res, t, cor;
|
|
mynumber u;
|
|
int4 k, m;
|
|
double retval = 0;
|
|
|
|
#ifndef IN_SINCOS
|
|
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
|
#endif
|
|
|
|
u.x = x;
|
|
m = u.i[HIGH_HALF];
|
|
k = 0x7fffffff & m; /* no sign */
|
|
if (k < 0x3e500000) /* if x->0 =>sin(x)=x */
|
|
{
|
|
math_check_force_underflow (x);
|
|
retval = x;
|
|
}
|
|
/*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/
|
|
else if (k < 0x3fd00000)
|
|
{
|
|
xx = x * x;
|
|
/* Taylor series. */
|
|
t = POLYNOMIAL (xx) * (xx * x);
|
|
res = x + t;
|
|
cor = (x - res) + t;
|
|
retval = (res == res + 1.07 * cor) ? res : slow (x);
|
|
} /* else if (k < 0x3fd00000) */
|
|
/*---------------------------- 0.25<|x|< 0.855469---------------------- */
|
|
else if (k < 0x3feb6000)
|
|
{
|
|
res = do_sin (x, 0, &cor);
|
|
retval = (res == res + 1.096 * cor) ? res : slow1 (x);
|
|
retval = __copysign (retval, x);
|
|
} /* else if (k < 0x3feb6000) */
|
|
|
|
/*----------------------- 0.855469 <|x|<2.426265 ----------------------*/
|
|
else if (k < 0x400368fd)
|
|
{
|
|
|
|
t = hp0 - fabs (x);
|
|
res = do_cos (t, hp1, &cor);
|
|
retval = (res == res + 1.020 * cor) ? res : slow2 (x);
|
|
retval = __copysign (retval, x);
|
|
} /* else if (k < 0x400368fd) */
|
|
|
|
#ifndef IN_SINCOS
|
|
/*-------------------------- 2.426265<|x|< 105414350 ----------------------*/
|
|
else if (k < 0x419921FB)
|
|
{
|
|
double a, da;
|
|
int4 n = reduce_sincos_1 (x, &a, &da);
|
|
retval = do_sincos_1 (a, da, x, n, false);
|
|
} /* else if (k < 0x419921FB ) */
|
|
|
|
/*---------------------105414350 <|x|< 281474976710656 --------------------*/
|
|
else if (k < 0x42F00000)
|
|
{
|
|
double a, da;
|
|
|
|
int4 n = reduce_sincos_2 (x, &a, &da);
|
|
retval = do_sincos_2 (a, da, x, n, false);
|
|
} /* else if (k < 0x42F00000 ) */
|
|
|
|
/* -----------------281474976710656 <|x| <2^1024----------------------------*/
|
|
else if (k < 0x7ff00000)
|
|
retval = reduce_and_compute (x, false);
|
|
|
|
/*--------------------- |x| > 2^1024 ----------------------------------*/
|
|
else
|
|
{
|
|
if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
|
|
__set_errno (EDOM);
|
|
retval = x / x;
|
|
}
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/*******************************************************************/
|
|
/* An ultimate cos routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of cos(x) */
|
|
/*******************************************************************/
|
|
|
|
#ifdef IN_SINCOS
|
|
static double
|
|
#else
|
|
double
|
|
SECTION
|
|
#endif
|
|
__cos (double x)
|
|
{
|
|
double y, xx, res, cor, a, da;
|
|
mynumber u;
|
|
int4 k, m;
|
|
|
|
double retval = 0;
|
|
|
|
#ifndef IN_SINCOS
|
|
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
|
|
#endif
|
|
|
|
u.x = x;
|
|
m = u.i[HIGH_HALF];
|
|
k = 0x7fffffff & m;
|
|
|
|
/* |x|<2^-27 => cos(x)=1 */
|
|
if (k < 0x3e400000)
|
|
retval = 1.0;
|
|
|
|
else if (k < 0x3feb6000)
|
|
{ /* 2^-27 < |x| < 0.855469 */
|
|
res = do_cos (x, 0, &cor);
|
|
retval = (res == res + 1.020 * cor) ? res : cslow2 (x);
|
|
} /* else if (k < 0x3feb6000) */
|
|
|
|
else if (k < 0x400368fd)
|
|
{ /* 0.855469 <|x|<2.426265 */ ;
|
|
y = hp0 - fabs (x);
|
|
a = y + hp1;
|
|
da = (y - a) + hp1;
|
|
xx = a * a;
|
|
if (xx < 0.01588)
|
|
{
|
|
res = TAYLOR_SIN (xx, a, da, cor);
|
|
cor = 1.02 * cor + __copysign (1.0e-31, cor);
|
|
retval = (res == res + cor) ? res : sloww (a, da, x, true);
|
|
}
|
|
else
|
|
{
|
|
res = do_sin (a, da, &cor);
|
|
cor = 1.035 * cor + __copysign (1.0e-31, cor);
|
|
retval = ((res == res + cor) ? __copysign (res, a)
|
|
: sloww1 (a, da, x, true));
|
|
}
|
|
|
|
} /* else if (k < 0x400368fd) */
|
|
|
|
|
|
#ifndef IN_SINCOS
|
|
else if (k < 0x419921FB)
|
|
{ /* 2.426265<|x|< 105414350 */
|
|
double a, da;
|
|
int4 n = reduce_sincos_1 (x, &a, &da);
|
|
retval = do_sincos_1 (a, da, x, n, true);
|
|
} /* else if (k < 0x419921FB ) */
|
|
|
|
else if (k < 0x42F00000)
|
|
{
|
|
double a, da;
|
|
|
|
int4 n = reduce_sincos_2 (x, &a, &da);
|
|
retval = do_sincos_2 (a, da, x, n, true);
|
|
} /* else if (k < 0x42F00000 ) */
|
|
|
|
/* 281474976710656 <|x| <2^1024 */
|
|
else if (k < 0x7ff00000)
|
|
retval = reduce_and_compute (x, true);
|
|
|
|
else
|
|
{
|
|
if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
|
|
__set_errno (EDOM);
|
|
retval = x / x; /* |x| > 2^1024 */
|
|
}
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more */
|
|
/* precision and if still doesn't accurate enough by mpsin or dubsin */
|
|
/************************************************************************/
|
|
|
|
static inline double
|
|
__always_inline
|
|
slow (double x)
|
|
{
|
|
double res, cor, w[2];
|
|
res = TAYLOR_SLOW (x, 0, cor);
|
|
if (res == res + 1.0007 * cor)
|
|
return res;
|
|
|
|
__dubsin (fabs (x), 0, w);
|
|
if (w[0] == w[0] + 1.000000001 * w[1])
|
|
return __copysign (w[0], x);
|
|
|
|
return __copysign (__mpsin (fabs (x), 0, false), x);
|
|
}
|
|
|
|
/*******************************************************************************/
|
|
/* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */
|
|
/* and if result still doesn't accurate enough by mpsin or dubsin */
|
|
/*******************************************************************************/
|
|
|
|
static inline double
|
|
__always_inline
|
|
slow1 (double x)
|
|
{
|
|
double w[2], cor, res;
|
|
|
|
res = do_sin_slow (x, 0, 0, &cor);
|
|
if (res == res + cor)
|
|
return res;
|
|
|
|
__dubsin (fabs (x), 0, w);
|
|
if (w[0] == w[0] + 1.000000005 * w[1])
|
|
return w[0];
|
|
|
|
return __mpsin (fabs (x), 0, false);
|
|
}
|
|
|
|
/**************************************************************************/
|
|
/* Routine compute sin(x) for 0.855469 <|x|<2.426265 by __sincostab.tbl */
|
|
/* and if result still doesn't accurate enough by mpsin or dubsin */
|
|
/**************************************************************************/
|
|
static inline double
|
|
__always_inline
|
|
slow2 (double x)
|
|
{
|
|
double w[2], y, y1, y2, cor, res;
|
|
|
|
double t = hp0 - fabs (x);
|
|
res = do_cos_slow (t, hp1, 0, &cor);
|
|
if (res == res + cor)
|
|
return res;
|
|
|
|
y = fabs (x) - hp0;
|
|
y1 = y - hp1;
|
|
y2 = (y - y1) - hp1;
|
|
__docos (y1, y2, w);
|
|
if (w[0] == w[0] + 1.000000005 * w[1])
|
|
return w[0];
|
|
|
|
return __mpsin (fabs (x), 0, false);
|
|
}
|
|
|
|
/* Compute sin(x + dx) where X is small enough to use Taylor series around zero
|
|
and (x + dx) in the first or third quarter of the unit circle. ORIG is the
|
|
original value of X for computing error of the result. If the result is not
|
|
accurate enough, the routine calls mpsin or dubsin. SHIFT_QUADRANT rotates
|
|
the unit circle by 1 to compute the cosine instead of sine. */
|
|
static inline double
|
|
__always_inline
|
|
sloww (double x, double dx, double orig, bool shift_quadrant)
|
|
{
|
|
double y, t, res, cor, w[2], a, da, xn;
|
|
mynumber v;
|
|
int4 n;
|
|
res = TAYLOR_SLOW (x, dx, cor);
|
|
|
|
double eps = fabs (orig) * 3.1e-30;
|
|
|
|
cor = 1.0005 * cor + __copysign (eps, cor);
|
|
|
|
if (res == res + cor)
|
|
return res;
|
|
|
|
a = fabs (x);
|
|
da = (x > 0) ? dx : -dx;
|
|
__dubsin (a, da, w);
|
|
eps = fabs (orig) * 1.1e-30;
|
|
cor = 1.000000001 * w[1] + __copysign (eps, w[1]);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return __copysign (w[0], x);
|
|
|
|
t = (orig * hpinv + toint);
|
|
xn = t - toint;
|
|
v.x = t;
|
|
y = (orig - xn * mp1) - xn * mp2;
|
|
n = (v.i[LOW_HALF] + shift_quadrant) & 3;
|
|
da = xn * pp3;
|
|
t = y - da;
|
|
da = (y - t) - da;
|
|
y = xn * pp4;
|
|
a = t - y;
|
|
da = ((t - a) - y) + da;
|
|
|
|
if (n & 2)
|
|
{
|
|
a = -a;
|
|
da = -da;
|
|
}
|
|
x = fabs (a);
|
|
dx = (a > 0) ? da : -da;
|
|
__dubsin (x, dx, w);
|
|
eps = fabs (orig) * 1.1e-40;
|
|
cor = 1.000000001 * w[1] + __copysign (eps, w[1]);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return __copysign (w[0], a);
|
|
|
|
return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
|
|
/* Compute sin(x + dx) where X is in the first or third quarter of the unit
|
|
circle. ORIG is the original value of X for computing error of the result.
|
|
If the result is not accurate enough, the routine calls mpsin or dubsin.
|
|
SHIFT_QUADRANT rotates the unit circle by 1 to compute the cosine instead of
|
|
sine. */
|
|
static inline double
|
|
__always_inline
|
|
sloww1 (double x, double dx, double orig, bool shift_quadrant)
|
|
{
|
|
double w[2], cor, res;
|
|
|
|
res = do_sin_slow (x, dx, 3.1e-30 * fabs (orig), &cor);
|
|
|
|
if (res == res + cor)
|
|
return __copysign (res, x);
|
|
|
|
dx = (x > 0 ? dx : -dx);
|
|
__dubsin (fabs (x), dx, w);
|
|
|
|
double eps = 1.1e-30 * fabs (orig);
|
|
cor = 1.000000005 * w[1] + __copysign (eps, w[1]);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return __copysign (w[0], x);
|
|
|
|
return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) (Double-Length number) where x in second or */
|
|
/* fourth quarter of unit circle.Routine receive also the original value */
|
|
/* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
|
|
/* accurate enough routine calls mpsin1 or dubsin */
|
|
/***************************************************************************/
|
|
|
|
static inline double
|
|
__always_inline
|
|
sloww2 (double x, double dx, double orig, int n)
|
|
{
|
|
double w[2], cor, res;
|
|
|
|
res = do_cos_slow (x, dx, 3.1e-30 * fabs (orig), &cor);
|
|
|
|
if (res == res + cor)
|
|
return (n & 2) ? -res : res;
|
|
|
|
dx = x > 0 ? dx : -dx;
|
|
__docos (fabs (x), dx, w);
|
|
|
|
double eps = 1.1e-30 * fabs (orig);
|
|
cor = 1.000000005 * w[1] + __copysign (eps, w[1]);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (n & 2) ? -w[0] : w[0];
|
|
|
|
return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
|
|
/* is small enough to use Taylor series around zero and (x+dx) */
|
|
/* in first or third quarter of unit circle.Routine receive also */
|
|
/* (right argument) the original value of x for computing error of */
|
|
/* result.And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static inline double
|
|
__always_inline
|
|
bsloww (double x, double dx, double orig, int n)
|
|
{
|
|
double res, cor, w[2], a, da;
|
|
|
|
res = TAYLOR_SLOW (x, dx, cor);
|
|
cor = 1.0005 * cor + __copysign (1.1e-24, cor);
|
|
if (res == res + cor)
|
|
return res;
|
|
|
|
a = fabs (x);
|
|
da = (x > 0) ? dx : -dx;
|
|
__dubsin (a, da, w);
|
|
cor = 1.000000001 * w[1] + __copysign (1.1e-24, w[1]);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return __copysign (w[0], x);
|
|
|
|
return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
|
|
/* in first or third quarter of unit circle.Routine receive also */
|
|
/* (right argument) the original value of x for computing error of result.*/
|
|
/* And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static inline double
|
|
__always_inline
|
|
bsloww1 (double x, double dx, double orig, int n)
|
|
{
|
|
double w[2], cor, res;
|
|
|
|
res = do_sin_slow (x, dx, 1.1e-24, &cor);
|
|
if (res == res + cor)
|
|
return (x > 0) ? res : -res;
|
|
|
|
dx = (x > 0) ? dx : -dx;
|
|
__dubsin (fabs (x), dx, w);
|
|
|
|
cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return __copysign (w[0], x);
|
|
|
|
return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
|
|
}
|
|
|
|
/***************************************************************************/
|
|
/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
|
|
/* in second or fourth quarter of unit circle.Routine receive also the */
|
|
/* original value and quarter(n= 1or 3)of x for computing error of result. */
|
|
/* And if result not accurate enough routine calls other routines */
|
|
/***************************************************************************/
|
|
|
|
static inline double
|
|
__always_inline
|
|
bsloww2 (double x, double dx, double orig, int n)
|
|
{
|
|
double w[2], cor, res;
|
|
|
|
res = do_cos_slow (x, dx, 1.1e-24, &cor);
|
|
if (res == res + cor)
|
|
return (n & 2) ? -res : res;
|
|
|
|
dx = (x > 0) ? dx : -dx;
|
|
__docos (fabs (x), dx, w);
|
|
|
|
cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);
|
|
|
|
if (w[0] == w[0] + cor)
|
|
return (n & 2) ? -w[0] : w[0];
|
|
|
|
return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Routine compute cos(x) for 2^-27 < |x|< 0.25 by Taylor with more */
|
|
/* precision and if still doesn't accurate enough by mpcos or docos */
|
|
/************************************************************************/
|
|
|
|
static inline double
|
|
__always_inline
|
|
cslow2 (double x)
|
|
{
|
|
double w[2], cor, res;
|
|
|
|
res = do_cos_slow (x, 0, 0, &cor);
|
|
if (res == res + cor)
|
|
return res;
|
|
|
|
__docos (fabs (x), 0, w);
|
|
if (w[0] == w[0] + 1.000000005 * w[1])
|
|
return w[0];
|
|
|
|
return __mpcos (x, 0, false);
|
|
}
|
|
|
|
#ifndef __cos
|
|
libm_alias_double (__cos, cos)
|
|
#endif
|
|
#ifndef __sin
|
|
libm_alias_double (__sin, sin)
|
|
#endif
|