glibc/db2/hash/hash_page.c
Ulrich Drepper 2c874db2dd Update.
* db2/btree/bt_cursor.c: Likewise.
	* db2/common/db_region.db_c: Likewise.
	* db2/common/db_salloc.db_c: Likewise.
	* db2/db/db.c: Likewise.
	* db2/db/db_rec.c: Likewise.
	* db2/hash/hash.c: Likewise.
	* db2/hash/hash_page.c: Likewise.
	* db2/hash/hash_rec.c: Likewise.
	* db2/log/log_findckp.c: Likewise.
	* db2/log/log_get.c: Likewise.
	* db2/log/log_put.c: Likewise.
	* db2/mp/mp_fget.c: Likewise.
	* db2/mp/mp_fput.c: Likewise.
	* db2/mp/mp_region.c: Likewise.
1998-09-07 11:07:34 +00:00

1872 lines
48 KiB
C

/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996, 1997, 1998
* Sleepycat Software. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994
* Margo Seltzer. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Margo Seltzer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#ifndef lint
static const char sccsid[] = "@(#)hash_page.c 10.40 (Sleepycat) 6/2/98";
#endif /* not lint */
/*
* PACKAGE: hashing
*
* DESCRIPTION:
* Page manipulation for hashing package.
*
* ROUTINES:
*
* External
* __get_page
* __add_ovflpage
* __overflow_page
* Internal
* open_temp
*/
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#endif
#include "db_int.h"
#include "db_page.h"
#include "hash.h"
static int __ham_lock_bucket __P((DB *, HASH_CURSOR *, db_lockmode_t));
#ifdef DEBUG_SLOW
static void __account_page(HTAB *, db_pgno_t, int);
#endif
/*
* PUBLIC: int __ham_item __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
*/
int
__ham_item(hashp, cursorp, mode)
HTAB *hashp;
HASH_CURSOR *cursorp;
db_lockmode_t mode;
{
db_pgno_t next_pgno;
int ret;
if (F_ISSET(cursorp, H_DELETED))
return (EINVAL);
F_CLR(cursorp, H_OK | H_NOMORE);
/* Check if we need to get a page for this cursor. */
if ((ret = __ham_get_cpage(hashp, cursorp, mode)) != 0)
return (ret);
/* Check if we are looking for space in which to insert an item. */
if (cursorp->seek_size && cursorp->seek_found_page == PGNO_INVALID
&& cursorp->seek_size < P_FREESPACE(cursorp->pagep))
cursorp->seek_found_page = cursorp->pgno;
/* Check if we need to go on to the next page. */
if (F_ISSET(cursorp, H_ISDUP) && cursorp->dpgno == PGNO_INVALID)
/*
* ISDUP is set, and offset is at the beginning of the datum.
* We need to grab the length of the datum, then set the datum
* pointer to be the beginning of the datum.
*/
memcpy(&cursorp->dup_len,
HKEYDATA_DATA(H_PAIRDATA(cursorp->pagep, cursorp->bndx)) +
cursorp->dup_off, sizeof(db_indx_t));
else if (F_ISSET(cursorp, H_ISDUP)) {
/* Make sure we're not about to run off the page. */
if (cursorp->dpagep == NULL && (ret = __ham_get_page(hashp->dbp,
cursorp->dpgno, &cursorp->dpagep)) != 0)
return (ret);
if (cursorp->dndx >= NUM_ENT(cursorp->dpagep)) {
if (NEXT_PGNO(cursorp->dpagep) == PGNO_INVALID) {
if ((ret = __ham_put_page(hashp->dbp,
cursorp->dpagep, 0)) != 0)
return (ret);
F_CLR(cursorp, H_ISDUP);
cursorp->dpagep = NULL;
cursorp->dpgno = PGNO_INVALID;
cursorp->dndx = NDX_INVALID;
cursorp->bndx++;
} else if ((ret = __ham_next_cpage(hashp, cursorp,
NEXT_PGNO(cursorp->dpagep), 0, H_ISDUP)) != 0)
return (ret);
}
}
if (cursorp->bndx >= (db_indx_t)H_NUMPAIRS(cursorp->pagep)) {
/* Fetch next page. */
if (NEXT_PGNO(cursorp->pagep) == PGNO_INVALID) {
F_SET(cursorp, H_NOMORE);
if (cursorp->dpagep != NULL &&
(ret = __ham_put_page(hashp->dbp,
cursorp->dpagep, 0)) != 0)
return (ret);
cursorp->dpgno = PGNO_INVALID;
return (DB_NOTFOUND);
}
next_pgno = NEXT_PGNO(cursorp->pagep);
cursorp->bndx = 0;
if ((ret = __ham_next_cpage(hashp,
cursorp, next_pgno, 0, 0)) != 0)
return (ret);
}
F_SET(cursorp, H_OK);
return (0);
}
/*
* PUBLIC: int __ham_item_reset __P((HTAB *, HASH_CURSOR *));
*/
int
__ham_item_reset(hashp, cursorp)
HTAB *hashp;
HASH_CURSOR *cursorp;
{
int ret;
if (cursorp->pagep)
ret = __ham_put_page(hashp->dbp, cursorp->pagep, 0);
else
ret = 0;
__ham_item_init(cursorp);
return (ret);
}
/*
* PUBLIC: void __ham_item_init __P((HASH_CURSOR *));
*/
void
__ham_item_init(cursorp)
HASH_CURSOR *cursorp;
{
cursorp->pagep = NULL;
cursorp->bucket = BUCKET_INVALID;
cursorp->lock = 0;
cursorp->bndx = NDX_INVALID;
cursorp->pgno = PGNO_INVALID;
cursorp->dpgno = PGNO_INVALID;
cursorp->dndx = NDX_INVALID;
cursorp->dpagep = NULL;
cursorp->flags = 0;
cursorp->seek_size = 0;
cursorp->seek_found_page = PGNO_INVALID;
}
/*
* PUBLIC: int __ham_item_done __P((HTAB *, HASH_CURSOR *, int));
*/
int
__ham_item_done(hashp, cursorp, dirty)
HTAB *hashp;
HASH_CURSOR *cursorp;
int dirty;
{
int ret, t_ret;
t_ret = ret = 0;
if (cursorp->pagep)
ret = __ham_put_page(hashp->dbp, cursorp->pagep,
dirty && cursorp->dpagep == NULL);
cursorp->pagep = NULL;
if (cursorp->dpagep)
t_ret = __ham_put_page(hashp->dbp, cursorp->dpagep, dirty);
cursorp->dpagep = NULL;
if (ret == 0 && t_ret != 0)
ret = t_ret;
/*
* If we are running with transactions, then we must
* not relinquish locks explicitly.
*/
if (cursorp->lock && hashp->dbp->txn == NULL)
t_ret = lock_put(hashp->dbp->dbenv->lk_info, cursorp->lock);
cursorp->lock = 0;
/*
* We don't throw out the page number since we might want to
* continue getting on this page.
*/
return (ret != 0 ? ret : t_ret);
}
/*
* Returns the last item in a bucket.
*
* PUBLIC: int __ham_item_last __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
*/
int
__ham_item_last(hashp, cursorp, mode)
HTAB *hashp;
HASH_CURSOR *cursorp;
db_lockmode_t mode;
{
int ret;
if ((ret = __ham_item_reset(hashp, cursorp)) != 0)
return (ret);
cursorp->bucket = hashp->hdr->max_bucket;
F_SET(cursorp, H_OK);
return (__ham_item_prev(hashp, cursorp, mode));
}
/*
* PUBLIC: int __ham_item_first __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
*/
int
__ham_item_first(hashp, cursorp, mode)
HTAB *hashp;
HASH_CURSOR *cursorp;
db_lockmode_t mode;
{
int ret;
if ((ret = __ham_item_reset(hashp, cursorp)) != 0)
return (ret);
F_SET(cursorp, H_OK);
cursorp->bucket = 0;
return (__ham_item_next(hashp, cursorp, mode));
}
/*
* __ham_item_prev --
* Returns a pointer to key/data pair on a page. In the case of
* bigkeys, just returns the page number and index of the bigkey
* pointer pair.
*
* PUBLIC: int __ham_item_prev __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
*/
int
__ham_item_prev(hashp, cursorp, mode)
HTAB *hashp;
HASH_CURSOR *cursorp;
db_lockmode_t mode;
{
db_pgno_t next_pgno;
int ret;
/*
* There are N cases for backing up in a hash file.
* Case 1: In the middle of a page, no duplicates, just dec the index.
* Case 2: In the middle of a duplicate set, back up one.
* Case 3: At the beginning of a duplicate set, get out of set and
* back up to next key.
* Case 4: At the beginning of a page; go to previous page.
* Case 5: At the beginning of a bucket; go to prev bucket.
*/
F_CLR(cursorp, H_OK | H_NOMORE | H_DELETED);
/*
* First handle the duplicates. Either you'll get the key here
* or you'll exit the duplicate set and drop into the code below
* to handle backing up through keys.
*/
if (F_ISSET(cursorp, H_ISDUP)) {
if (cursorp->dpgno == PGNO_INVALID) {
/* Duplicates are on-page. */
if (cursorp->dup_off != 0) {
if ((ret = __ham_get_cpage(hashp,
cursorp, mode)) != 0)
return (ret);
else {
HASH_CURSOR *h;
h = cursorp;
memcpy(&h->dup_len, HKEYDATA_DATA(
H_PAIRDATA(h->pagep, h->bndx))
+ h->dup_off - sizeof(db_indx_t),
sizeof(db_indx_t));
cursorp->dup_off -=
DUP_SIZE(cursorp->dup_len);
cursorp->dndx--;
return (__ham_item(hashp,
cursorp, mode));
}
}
} else if (cursorp->dndx > 0) { /* Duplicates are off-page. */
cursorp->dndx--;
return (__ham_item(hashp, cursorp, mode));
} else if ((ret = __ham_get_cpage(hashp, cursorp, mode)) != 0)
return (ret);
else if (PREV_PGNO(cursorp->dpagep) == PGNO_INVALID) {
F_CLR(cursorp, H_ISDUP); /* End of dups */
cursorp->dpgno = PGNO_INVALID;
if (cursorp->dpagep != NULL)
(void)__ham_put_page(hashp->dbp,
cursorp->dpagep, 0);
cursorp->dpagep = NULL;
} else if ((ret = __ham_next_cpage(hashp, cursorp,
PREV_PGNO(cursorp->dpagep), 0, H_ISDUP)) != 0)
return (ret);
else {
cursorp->dndx = NUM_ENT(cursorp->pagep) - 1;
return (__ham_item(hashp, cursorp, mode));
}
}
/*
* If we get here, we are not in a duplicate set, and just need
* to back up the cursor. There are still three cases:
* midpage, beginning of page, beginning of bucket.
*/
if (cursorp->bndx == 0) { /* Beginning of page. */
if ((ret = __ham_get_cpage(hashp, cursorp, mode)) != 0)
return (ret);
cursorp->pgno = PREV_PGNO(cursorp->pagep);
if (cursorp->pgno == PGNO_INVALID) {
/* Beginning of bucket. */
F_SET(cursorp, H_NOMORE);
return (DB_NOTFOUND);
} else if ((ret = __ham_next_cpage(hashp,
cursorp, cursorp->pgno, 0, 0)) != 0)
return (ret);
else
cursorp->bndx = H_NUMPAIRS(cursorp->pagep);
}
/*
* Either we've got the cursor set up to be decremented, or we
* have to find the end of a bucket.
*/
if (cursorp->bndx == NDX_INVALID) {
if (cursorp->pagep == NULL)
next_pgno = BUCKET_TO_PAGE(hashp, cursorp->bucket);
else
goto got_page;
do {
if ((ret = __ham_next_cpage(hashp,
cursorp, next_pgno, 0, 0)) != 0)
return (ret);
got_page: next_pgno = NEXT_PGNO(cursorp->pagep);
cursorp->bndx = H_NUMPAIRS(cursorp->pagep);
} while (next_pgno != PGNO_INVALID);
if (cursorp->bndx == 0) {
/* Bucket was empty. */
F_SET(cursorp, H_NOMORE);
return (DB_NOTFOUND);
}
}
cursorp->bndx--;
return (__ham_item(hashp, cursorp, mode));
}
/*
* Sets the cursor to the next key/data pair on a page.
*
* PUBLIC: int __ham_item_next __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
*/
int
__ham_item_next(hashp, cursorp, mode)
HTAB *hashp;
HASH_CURSOR *cursorp;
db_lockmode_t mode;
{
/*
* Deleted on-page duplicates are a weird case. If we delete the last
* one, then our cursor is at the very end of a duplicate set and
* we actually need to go on to the next key.
*/
if (F_ISSET(cursorp, H_DELETED)) {
if (cursorp->bndx != NDX_INVALID &&
F_ISSET(cursorp, H_ISDUP) &&
cursorp->dpgno == PGNO_INVALID &&
cursorp->dup_tlen == cursorp->dup_off) {
F_CLR(cursorp, H_ISDUP);
cursorp->dpgno = PGNO_INVALID;
cursorp->bndx++;
}
F_CLR(cursorp, H_DELETED);
} else if (cursorp->bndx == NDX_INVALID) {
cursorp->bndx = 0;
cursorp->dpgno = PGNO_INVALID;
F_CLR(cursorp, H_ISDUP);
} else if (F_ISSET(cursorp, H_ISDUP) && cursorp->dpgno != PGNO_INVALID)
cursorp->dndx++;
else if (F_ISSET(cursorp, H_ISDUP)) {
cursorp->dndx++;
cursorp->dup_off += DUP_SIZE(cursorp->dup_len);
if (cursorp->dup_off >= cursorp->dup_tlen) {
F_CLR(cursorp, H_ISDUP);
cursorp->dpgno = PGNO_INVALID;
cursorp->bndx++;
}
} else
cursorp->bndx++;
return (__ham_item(hashp, cursorp, mode));
}
/*
* PUBLIC: void __ham_putitem __P((PAGE *p, const DBT *, int));
*
* This is a little bit sleazy in that we're overloading the meaning
* of the H_OFFPAGE type here. When we recover deletes, we have the
* entire entry instead of having only the DBT, so we'll pass type
* H_OFFPAGE to mean, "copy the whole entry" as opposed to constructing
* an H_KEYDATA around it.
*/
void
__ham_putitem(p, dbt, type)
PAGE *p;
const DBT *dbt;
int type;
{
u_int16_t n, off;
n = NUM_ENT(p);
/* Put the item element on the page. */
if (type == H_OFFPAGE) {
off = HOFFSET(p) - dbt->size;
HOFFSET(p) = p->inp[n] = off;
memcpy(P_ENTRY(p, n), dbt->data, dbt->size);
} else {
off = HOFFSET(p) - HKEYDATA_SIZE(dbt->size);
HOFFSET(p) = p->inp[n] = off;
PUT_HKEYDATA(P_ENTRY(p, n), dbt->data, dbt->size, type);
}
/* Adjust page info. */
NUM_ENT(p) += 1;
}
/*
* PUBLIC: void __ham_reputpair
* PUBLIC: __P((PAGE *p, u_int32_t, u_int32_t, const DBT *, const DBT *));
*
* This is a special case to restore a key/data pair to its original
* location during recovery. We are guaranteed that the pair fits
* on the page and is not the last pair on the page (because if it's
* the last pair, the normal insert works).
*/
void
__ham_reputpair(p, psize, ndx, key, data)
PAGE *p;
u_int32_t psize, ndx;
const DBT *key, *data;
{
db_indx_t i, movebytes, newbytes;
u_int8_t *from;
/* First shuffle the existing items up on the page. */
movebytes =
(ndx == 0 ? psize : p->inp[H_DATAINDEX(ndx - 1)]) - HOFFSET(p);
newbytes = key->size + data->size;
from = (u_int8_t *)p + HOFFSET(p);
memmove(from - newbytes, from, movebytes);
/*
* Adjust the indices and move them up 2 spaces. Note that we
* have to check the exit condition inside the loop just in case
* we are dealing with index 0 (db_indx_t's are unsigned).
*/
for (i = NUM_ENT(p) - 1; ; i-- ) {
p->inp[i + 2] = p->inp[i] - newbytes;
if (i == H_KEYINDEX(ndx))
break;
}
/* Put the key and data on the page. */
p->inp[H_KEYINDEX(ndx)] =
(ndx == 0 ? psize : p->inp[H_DATAINDEX(ndx - 1)]) - key->size;
p->inp[H_DATAINDEX(ndx)] = p->inp[H_KEYINDEX(ndx)] - data->size;
memcpy(P_ENTRY(p, H_KEYINDEX(ndx)), key->data, key->size);
memcpy(P_ENTRY(p, H_DATAINDEX(ndx)), data->data, data->size);
/* Adjust page info. */
HOFFSET(p) -= newbytes;
NUM_ENT(p) += 2;
}
/*
* PUBLIC: int __ham_del_pair __P((HTAB *, HASH_CURSOR *, int));
*
* XXX
* TODO: if the item is an offdup, delete the other pages and then remove
* the pair. If the offpage page is 0, then you can just remove the pair.
*/
int
__ham_del_pair(hashp, cursorp, reclaim_page)
HTAB *hashp;
HASH_CURSOR *cursorp;
int reclaim_page;
{
DBT data_dbt, key_dbt;
DB_ENV *dbenv;
DB_LSN new_lsn, *n_lsn, tmp_lsn;
PAGE *p;
db_indx_t ndx;
db_pgno_t chg_pgno, pgno;
int ret, tret;
dbenv = hashp->dbp->dbenv;
ndx = cursorp->bndx;
if (cursorp->pagep == NULL && (ret =
__ham_get_page(hashp->dbp, cursorp->pgno, &cursorp->pagep)) != 0)
return (ret);
p = cursorp->pagep;
/*
* We optimize for the normal case which is when neither the key nor
* the data are large. In this case, we write a single log record
* and do the delete. If either is large, we'll call __big_delete
* to remove the big item and then update the page to remove the
* entry referring to the big item.
*/
ret = 0;
if (HPAGE_PTYPE(H_PAIRKEY(p, ndx)) == H_OFFPAGE) {
memcpy(&pgno, HOFFPAGE_PGNO(P_ENTRY(p, H_KEYINDEX(ndx))),
sizeof(db_pgno_t));
ret = __db_doff(hashp->dbp, pgno, __ham_del_page);
}
if (ret == 0)
switch (HPAGE_PTYPE(H_PAIRDATA(p, ndx))) {
case H_OFFPAGE:
memcpy(&pgno,
HOFFPAGE_PGNO(P_ENTRY(p, H_DATAINDEX(ndx))),
sizeof(db_pgno_t));
ret = __db_doff(hashp->dbp, pgno, __ham_del_page);
break;
case H_OFFDUP:
memcpy(&pgno,
HOFFDUP_PGNO(P_ENTRY(p, H_DATAINDEX(ndx))),
sizeof(db_pgno_t));
ret = __db_ddup(hashp->dbp, pgno, __ham_del_page);
F_CLR(cursorp, H_ISDUP);
break;
case H_DUPLICATE:
/*
* If we delete a pair that is/was a duplicate, then
* we had better clear the flag so that we update the
* cursor appropriately.
*/
F_CLR(cursorp, H_ISDUP);
break;
}
if (ret)
return (ret);
/* Now log the delete off this page. */
if (DB_LOGGING(hashp->dbp)) {
key_dbt.data = P_ENTRY(p, H_KEYINDEX(ndx));
key_dbt.size =
LEN_HITEM(p, hashp->hdr->pagesize, H_KEYINDEX(ndx));
data_dbt.data = P_ENTRY(p, H_DATAINDEX(ndx));
data_dbt.size =
LEN_HITEM(p, hashp->hdr->pagesize, H_DATAINDEX(ndx));
if ((ret = __ham_insdel_log(dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, DELPAIR,
hashp->dbp->log_fileid, PGNO(p), (u_int32_t)ndx,
&LSN(p), &key_dbt, &data_dbt)) != 0)
return (ret);
/* Move lsn onto page. */
LSN(p) = new_lsn;
}
__ham_dpair(hashp->dbp, p, ndx);
/*
* If we are locking, we will not maintain this.
* XXXX perhaps we can retain incremental numbers and apply them
* later.
*/
if (!F_ISSET(hashp->dbp, DB_AM_LOCKING))
--hashp->hdr->nelem;
/*
* If we need to reclaim the page, then check if the page is empty.
* There are two cases. If it's empty and it's not the first page
* in the bucket (i.e., the bucket page) then we can simply remove
* it. If it is the first chain in the bucket, then we need to copy
* the second page into it and remove the second page.
*/
if (reclaim_page && NUM_ENT(p) == 0 && PREV_PGNO(p) == PGNO_INVALID &&
NEXT_PGNO(p) != PGNO_INVALID) {
PAGE *n_pagep, *nn_pagep;
db_pgno_t tmp_pgno;
/*
* First page in chain is empty and we know that there
* are more pages in the chain.
*/
if ((ret =
__ham_get_page(hashp->dbp, NEXT_PGNO(p), &n_pagep)) != 0)
return (ret);
if (NEXT_PGNO(n_pagep) != PGNO_INVALID) {
if ((ret =
__ham_get_page(hashp->dbp, NEXT_PGNO(n_pagep),
&nn_pagep)) != 0) {
(void) __ham_put_page(hashp->dbp, n_pagep, 0);
return (ret);
}
}
if (DB_LOGGING(hashp->dbp)) {
key_dbt.data = n_pagep;
key_dbt.size = hashp->hdr->pagesize;
if ((ret = __ham_copypage_log(dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
hashp->dbp->log_fileid, PGNO(p), &LSN(p),
PGNO(n_pagep), &LSN(n_pagep), NEXT_PGNO(n_pagep),
NEXT_PGNO(n_pagep) == PGNO_INVALID ? NULL :
&LSN(nn_pagep), &key_dbt)) != 0)
return (ret);
/* Move lsn onto page. */
LSN(p) = new_lsn; /* Structure assignment. */
LSN(n_pagep) = new_lsn;
if (NEXT_PGNO(n_pagep) != PGNO_INVALID)
LSN(nn_pagep) = new_lsn;
}
if (NEXT_PGNO(n_pagep) != PGNO_INVALID) {
PREV_PGNO(nn_pagep) = PGNO(p);
(void)__ham_put_page(hashp->dbp, nn_pagep, 1);
}
tmp_pgno = PGNO(p);
tmp_lsn = LSN(p);
memcpy(p, n_pagep, hashp->hdr->pagesize);
PGNO(p) = tmp_pgno;
LSN(p) = tmp_lsn;
PREV_PGNO(p) = PGNO_INVALID;
/*
* Cursor is advanced to the beginning of the next page.
*/
cursorp->bndx = 0;
cursorp->pgno = PGNO(p);
F_SET(cursorp, H_DELETED);
chg_pgno = PGNO(p);
if ((ret = __ham_dirty_page(hashp, p)) != 0 ||
(ret = __ham_del_page(hashp->dbp, n_pagep)) != 0)
return (ret);
} else if (reclaim_page &&
NUM_ENT(p) == 0 && PREV_PGNO(p) != PGNO_INVALID) {
PAGE *n_pagep, *p_pagep;
if ((ret =
__ham_get_page(hashp->dbp, PREV_PGNO(p), &p_pagep)) != 0)
return (ret);
if (NEXT_PGNO(p) != PGNO_INVALID) {
if ((ret = __ham_get_page(hashp->dbp,
NEXT_PGNO(p), &n_pagep)) != 0) {
(void)__ham_put_page(hashp->dbp, p_pagep, 0);
return (ret);
}
n_lsn = &LSN(n_pagep);
} else {
n_pagep = NULL;
n_lsn = NULL;
}
NEXT_PGNO(p_pagep) = NEXT_PGNO(p);
if (n_pagep != NULL)
PREV_PGNO(n_pagep) = PGNO(p_pagep);
if (DB_LOGGING(hashp->dbp)) {
if ((ret = __ham_newpage_log(dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, DELOVFL,
hashp->dbp->log_fileid, PREV_PGNO(p), &LSN(p_pagep),
PGNO(p), &LSN(p), NEXT_PGNO(p), n_lsn)) != 0)
return (ret);
/* Move lsn onto page. */
LSN(p_pagep) = new_lsn; /* Structure assignment. */
if (n_pagep)
LSN(n_pagep) = new_lsn;
LSN(p) = new_lsn;
}
cursorp->pgno = NEXT_PGNO(p);
cursorp->bndx = 0;
/*
* Since we are about to delete the cursor page and we have
* just moved the cursor, we need to make sure that the
* old page pointer isn't left hanging around in the cursor.
*/
cursorp->pagep = NULL;
chg_pgno = PGNO(p);
ret = __ham_del_page(hashp->dbp, p);
if ((tret = __ham_put_page(hashp->dbp, p_pagep, 1)) != 0 &&
ret == 0)
ret = tret;
if (n_pagep != NULL &&
(tret = __ham_put_page(hashp->dbp, n_pagep, 1)) != 0 &&
ret == 0)
ret = tret;
if (ret != 0)
return (ret);
} else {
/*
* Mark item deleted so that we don't try to return it, and
* so that we update the cursor correctly on the next call
* to next.
*/
F_SET(cursorp, H_DELETED);
chg_pgno = cursorp->pgno;
ret = __ham_dirty_page(hashp, p);
}
__ham_c_update(cursorp, chg_pgno, 0, 0, 0);
/*
* Since we just deleted a pair from the master page, anything
* in cursorp->dpgno should be cleared.
*/
cursorp->dpgno = PGNO_INVALID;
F_CLR(cursorp, H_OK);
return (ret);
}
/*
* __ham_replpair --
* Given the key data indicated by the cursor, replace part/all of it
* according to the fields in the dbt.
*
* PUBLIC: int __ham_replpair __P((HTAB *, HASH_CURSOR *, DBT *, u_int32_t));
*/
int
__ham_replpair(hashp, hcp, dbt, make_dup)
HTAB *hashp;
HASH_CURSOR *hcp;
DBT *dbt;
u_int32_t make_dup;
{
DBT old_dbt, tdata, tmp;
DB_LSN new_lsn;
int32_t change; /* XXX: Possible overflow. */
u_int32_t len;
int is_big, ret, type;
u_int8_t *beg, *dest, *end, *hk, *src;
/*
* Big item replacements are handled in generic code.
* Items that fit on the current page fall into 4 classes.
* 1. On-page element, same size
* 2. On-page element, new is bigger (fits)
* 3. On-page element, new is bigger (does not fit)
* 4. On-page element, old is bigger
* Numbers 1, 2, and 4 are essentially the same (and should
* be the common case). We handle case 3 as a delete and
* add.
*/
/*
* We need to compute the number of bytes that we are adding or
* removing from the entry. Normally, we can simply substract
* the number of bytes we are replacing (dbt->dlen) from the
* number of bytes we are inserting (dbt->size). However, if
* we are doing a partial put off the end of a record, then this
* formula doesn't work, because we are essentially adding
* new bytes.
*/
change = dbt->size - dbt->dlen;
hk = H_PAIRDATA(hcp->pagep, hcp->bndx);
is_big = HPAGE_PTYPE(hk) == H_OFFPAGE;
if (is_big)
memcpy(&len, HOFFPAGE_TLEN(hk), sizeof(u_int32_t));
else
len = LEN_HKEYDATA(hcp->pagep,
hashp->dbp->pgsize, H_DATAINDEX(hcp->bndx));
if (dbt->doff + dbt->dlen > len)
change += dbt->doff + dbt->dlen - len;
if (change > (int32_t)P_FREESPACE(hcp->pagep) || is_big) {
/*
* Case 3 -- two subcases.
* A. This is not really a partial operation, but an overwrite.
* Simple del and add works.
* B. This is a partial and we need to construct the data that
* we are really inserting (yuck).
* In both cases, we need to grab the key off the page (in
* some cases we could do this outside of this routine; for
* cleanliness we do it here. If you happen to be on a big
* key, this could be a performance hit).
*/
tmp.flags = 0;
F_SET(&tmp, DB_DBT_MALLOC | DB_DBT_INTERNAL);
if ((ret =
__db_ret(hashp->dbp, hcp->pagep, H_KEYINDEX(hcp->bndx),
&tmp, &hcp->big_key, &hcp->big_keylen)) != 0)
return (ret);
if (dbt->doff == 0 && dbt->dlen == len) {
ret = __ham_del_pair(hashp, hcp, 0);
if (ret == 0)
ret = __ham_add_el(hashp,
hcp, &tmp, dbt, H_KEYDATA);
} else { /* Case B */
type = HPAGE_PTYPE(hk) != H_OFFPAGE ?
HPAGE_PTYPE(hk) : H_KEYDATA;
tdata.flags = 0;
F_SET(&tdata, DB_DBT_MALLOC | DB_DBT_INTERNAL);
if ((ret = __db_ret(hashp->dbp, hcp->pagep,
H_DATAINDEX(hcp->bndx), &tdata, &hcp->big_data,
&hcp->big_datalen)) != 0)
goto err;
/* Now we can delete the item. */
if ((ret = __ham_del_pair(hashp, hcp, 0)) != 0) {
__db_free(tdata.data);
goto err;
}
/* Now shift old data around to make room for new. */
if (change > 0) {
tdata.data = (void *)__db_realloc(tdata.data,
tdata.size + change);
memset((u_int8_t *)tdata.data + tdata.size,
0, change);
}
if (tdata.data == NULL)
return (ENOMEM);
end = (u_int8_t *)tdata.data + tdata.size;
src = (u_int8_t *)tdata.data + dbt->doff + dbt->dlen;
if (src < end && tdata.size > dbt->doff + dbt->dlen) {
len = tdata.size - dbt->doff - dbt->dlen;
dest = src + change;
memmove(dest, src, len);
}
memcpy((u_int8_t *)tdata.data + dbt->doff,
dbt->data, dbt->size);
tdata.size += change;
/* Now add the pair. */
ret = __ham_add_el(hashp, hcp, &tmp, &tdata, type);
__db_free(tdata.data);
}
err: __db_free(tmp.data);
return (ret);
}
/*
* Set up pointer into existing data. Do it before the log
* message so we can use it inside of the log setup.
*/
beg = HKEYDATA_DATA(H_PAIRDATA(hcp->pagep, hcp->bndx));
beg += dbt->doff;
/*
* If we are going to have to move bytes at all, figure out
* all the parameters here. Then log the call before moving
* anything around.
*/
if (DB_LOGGING(hashp->dbp)) {
old_dbt.data = beg;
old_dbt.size = dbt->dlen;
if ((ret = __ham_replace_log(hashp->dbp->dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
hashp->dbp->log_fileid, PGNO(hcp->pagep),
(u_int32_t)H_DATAINDEX(hcp->bndx), &LSN(hcp->pagep),
(u_int32_t)dbt->doff, &old_dbt, dbt, make_dup)) != 0)
return (ret);
LSN(hcp->pagep) = new_lsn; /* Structure assignment. */
}
__ham_onpage_replace(hcp->pagep, hashp->dbp->pgsize,
(u_int32_t)H_DATAINDEX(hcp->bndx), (int32_t)dbt->doff, change, dbt);
return (0);
}
/*
* Replace data on a page with new data, possibly growing or shrinking what's
* there. This is called on two different occasions. On one (from replpair)
* we are interested in changing only the data. On the other (from recovery)
* we are replacing the entire data (header and all) with a new element. In
* the latter case, the off argument is negative.
* pagep: the page that we're changing
* ndx: page index of the element that is growing/shrinking.
* off: Offset at which we are beginning the replacement.
* change: the number of bytes (+ or -) that the element is growing/shrinking.
* dbt: the new data that gets written at beg.
* PUBLIC: void __ham_onpage_replace __P((PAGE *, size_t, u_int32_t, int32_t,
* PUBLIC: int32_t, DBT *));
*/
void
__ham_onpage_replace(pagep, pgsize, ndx, off, change, dbt)
PAGE *pagep;
size_t pgsize;
u_int32_t ndx;
int32_t off;
int32_t change;
DBT *dbt;
{
db_indx_t i;
int32_t len;
u_int8_t *src, *dest;
int zero_me;
if (change != 0) {
zero_me = 0;
src = (u_int8_t *)(pagep) + HOFFSET(pagep);
if (off < 0)
len = pagep->inp[ndx] - HOFFSET(pagep);
else if ((u_int32_t)off >= LEN_HKEYDATA(pagep, pgsize, ndx)) {
len = HKEYDATA_DATA(P_ENTRY(pagep, ndx)) +
LEN_HKEYDATA(pagep, pgsize, ndx) - src;
zero_me = 1;
} else
len = (HKEYDATA_DATA(P_ENTRY(pagep, ndx)) + off) - src;
dest = src - change;
memmove(dest, src, len);
if (zero_me)
memset(dest + len, 0, change);
/* Now update the indices. */
for (i = ndx; i < NUM_ENT(pagep); i++)
pagep->inp[i] -= change;
HOFFSET(pagep) -= change;
}
if (off >= 0)
memcpy(HKEYDATA_DATA(P_ENTRY(pagep, ndx)) + off,
dbt->data, dbt->size);
else
memcpy(P_ENTRY(pagep, ndx), dbt->data, dbt->size);
}
/*
* PUBLIC: int __ham_split_page __P((HTAB *, u_int32_t, u_int32_t));
*/
int
__ham_split_page(hashp, obucket, nbucket)
HTAB *hashp;
u_int32_t obucket, nbucket;
{
DBT key, page_dbt;
DB_ENV *dbenv;
DB_LSN new_lsn;
PAGE **pp, *old_pagep, *temp_pagep, *new_pagep;
db_indx_t n;
db_pgno_t bucket_pgno, next_pgno;
u_int32_t big_len, len;
int ret, tret;
void *big_buf;
dbenv = hashp->dbp->dbenv;
temp_pagep = old_pagep = new_pagep = NULL;
bucket_pgno = BUCKET_TO_PAGE(hashp, obucket);
if ((ret = __ham_get_page(hashp->dbp, bucket_pgno, &old_pagep)) != 0)
return (ret);
if ((ret = __ham_new_page(hashp, BUCKET_TO_PAGE(hashp, nbucket), P_HASH,
&new_pagep)) != 0)
goto err;
temp_pagep = hashp->split_buf;
memcpy(temp_pagep, old_pagep, hashp->hdr->pagesize);
if (DB_LOGGING(hashp->dbp)) {
page_dbt.size = hashp->hdr->pagesize;
page_dbt.data = old_pagep;
if ((ret = __ham_splitdata_log(dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
hashp->dbp->log_fileid, SPLITOLD, PGNO(old_pagep),
&page_dbt, &LSN(old_pagep))) != 0)
goto err;
}
P_INIT(old_pagep, hashp->hdr->pagesize, PGNO(old_pagep), PGNO_INVALID,
PGNO_INVALID, 0, P_HASH);
if (DB_LOGGING(hashp->dbp))
LSN(old_pagep) = new_lsn; /* Structure assignment. */
big_len = 0;
big_buf = NULL;
key.flags = 0;
while (temp_pagep != NULL) {
for (n = 0; n < (db_indx_t)H_NUMPAIRS(temp_pagep); n++) {
if ((ret =
__db_ret(hashp->dbp, temp_pagep, H_KEYINDEX(n),
&key, &big_buf, &big_len)) != 0)
goto err;
if (__ham_call_hash(hashp, key.data, key.size)
== obucket)
pp = &old_pagep;
else
pp = &new_pagep;
/*
* Figure out how many bytes we need on the new
* page to store the key/data pair.
*/
len = LEN_HITEM(temp_pagep, hashp->hdr->pagesize,
H_DATAINDEX(n)) +
LEN_HITEM(temp_pagep, hashp->hdr->pagesize,
H_KEYINDEX(n)) +
2 * sizeof(db_indx_t);
if (P_FREESPACE(*pp) < len) {
if (DB_LOGGING(hashp->dbp)) {
page_dbt.size = hashp->hdr->pagesize;
page_dbt.data = *pp;
if ((ret = __ham_splitdata_log(
dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn,
&new_lsn, 0,
hashp->dbp->log_fileid, SPLITNEW,
PGNO(*pp), &page_dbt,
&LSN(*pp))) != 0)
goto err;
LSN(*pp) = new_lsn;
}
if ((ret = __ham_add_ovflpage(hashp,
*pp, 1, pp)) != 0)
goto err;
}
__ham_copy_item(hashp, temp_pagep, H_KEYINDEX(n), *pp);
__ham_copy_item(hashp, temp_pagep, H_DATAINDEX(n), *pp);
}
next_pgno = NEXT_PGNO(temp_pagep);
/* Clear temp_page; if it's a link overflow page, free it. */
if (PGNO(temp_pagep) != bucket_pgno && (ret =
__ham_del_page(hashp->dbp, temp_pagep)) != 0)
goto err;
if (next_pgno == PGNO_INVALID)
temp_pagep = NULL;
else if ((ret =
__ham_get_page(hashp->dbp, next_pgno, &temp_pagep)) != 0)
goto err;
if (temp_pagep != NULL && DB_LOGGING(hashp->dbp)) {
page_dbt.size = hashp->hdr->pagesize;
page_dbt.data = temp_pagep;
if ((ret = __ham_splitdata_log(dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
hashp->dbp->log_fileid, SPLITOLD, PGNO(temp_pagep),
&page_dbt, &LSN(temp_pagep))) != 0)
goto err;
LSN(temp_pagep) = new_lsn;
}
}
if (big_buf != NULL)
__db_free(big_buf);
/*
* If the original bucket spanned multiple pages, then we've got
* a pointer to a page that used to be on the bucket chain. It
* should be deleted.
*/
if (temp_pagep != NULL && PGNO(temp_pagep) != bucket_pgno &&
(ret = __ham_del_page(hashp->dbp, temp_pagep)) != 0)
goto err;
/*
* Write new buckets out.
*/
if (DB_LOGGING(hashp->dbp)) {
page_dbt.size = hashp->hdr->pagesize;
page_dbt.data = old_pagep;
if ((ret = __ham_splitdata_log(dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
hashp->dbp->log_fileid, SPLITNEW, PGNO(old_pagep),
&page_dbt, &LSN(old_pagep))) != 0)
goto err;
LSN(old_pagep) = new_lsn;
page_dbt.data = new_pagep;
if ((ret = __ham_splitdata_log(dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0,
hashp->dbp->log_fileid, SPLITNEW, PGNO(new_pagep),
&page_dbt, &LSN(new_pagep))) != 0)
goto err;
LSN(new_pagep) = new_lsn;
}
ret = __ham_put_page(hashp->dbp, old_pagep, 1);
if ((tret = __ham_put_page(hashp->dbp, new_pagep, 1)) != 0 &&
ret == 0)
ret = tret;
if (0) {
err: if (old_pagep != NULL)
(void)__ham_put_page(hashp->dbp, old_pagep, 1);
if (new_pagep != NULL)
(void)__ham_put_page(hashp->dbp, new_pagep, 1);
if (temp_pagep != NULL && PGNO(temp_pagep) != bucket_pgno)
(void)__ham_put_page(hashp->dbp, temp_pagep, 1);
}
return (ret);
}
/*
* Add the given pair to the page. The page in question may already be
* held (i.e. it was already gotten). If it is, then the page is passed
* in via the pagep parameter. On return, pagep will contain the page
* to which we just added something. This allows us to link overflow
* pages and return the new page having correctly put the last page.
*
* PUBLIC: int __ham_add_el
* PUBLIC: __P((HTAB *, HASH_CURSOR *, const DBT *, const DBT *, int));
*/
int
__ham_add_el(hashp, hcp, key, val, type)
HTAB *hashp;
HASH_CURSOR *hcp;
const DBT *key, *val;
int type;
{
const DBT *pkey, *pdata;
DBT key_dbt, data_dbt;
DB_LSN new_lsn;
HOFFPAGE doff, koff;
db_pgno_t next_pgno;
u_int32_t data_size, key_size, pairsize, rectype;
int do_expand, is_keybig, is_databig, ret;
int key_type, data_type;
do_expand = 0;
if (hcp->pagep == NULL && (ret = __ham_get_page(hashp->dbp,
hcp->seek_found_page != PGNO_INVALID ? hcp->seek_found_page :
hcp->pgno, &hcp->pagep)) != 0)
return (ret);
key_size = HKEYDATA_PSIZE(key->size);
data_size = HKEYDATA_PSIZE(val->size);
is_keybig = ISBIG(hashp, key->size);
is_databig = ISBIG(hashp, val->size);
if (is_keybig)
key_size = HOFFPAGE_PSIZE;
if (is_databig)
data_size = HOFFPAGE_PSIZE;
pairsize = key_size + data_size;
/* Advance to first page in chain with room for item. */
while (H_NUMPAIRS(hcp->pagep) && NEXT_PGNO(hcp->pagep) !=
PGNO_INVALID) {
/*
* This may not be the end of the chain, but the pair may fit
* anyway. Check if it's a bigpair that fits or a regular
* pair that fits.
*/
if (P_FREESPACE(hcp->pagep) >= pairsize)
break;
next_pgno = NEXT_PGNO(hcp->pagep);
if ((ret =
__ham_next_cpage(hashp, hcp, next_pgno, 0, 0)) != 0)
return (ret);
}
/*
* Check if we need to allocate a new page.
*/
if (P_FREESPACE(hcp->pagep) < pairsize) {
do_expand = 1;
if ((ret = __ham_add_ovflpage(hashp,
hcp->pagep, 1, &hcp->pagep)) != 0)
return (ret);
hcp->pgno = PGNO(hcp->pagep);
}
/*
* Update cursor.
*/
hcp->bndx = H_NUMPAIRS(hcp->pagep);
F_CLR(hcp, H_DELETED);
if (is_keybig) {
if ((ret = __db_poff(hashp->dbp,
key, &koff.pgno, __ham_overflow_page)) != 0)
return (ret);
koff.type = H_OFFPAGE;
koff.tlen = key->size;
key_dbt.data = &koff;
key_dbt.size = sizeof(koff);
pkey = &key_dbt;
key_type = H_OFFPAGE;
} else {
pkey = key;
key_type = H_KEYDATA;
}
if (is_databig) {
if ((ret = __db_poff(hashp->dbp,
val, &doff.pgno, __ham_overflow_page)) != 0)
return (ret);
doff.type = H_OFFPAGE;
doff.tlen = val->size;
data_dbt.data = &doff;
data_dbt.size = sizeof(doff);
pdata = &data_dbt;
data_type = H_OFFPAGE;
} else {
pdata = val;
data_type = type;
}
if (DB_LOGGING(hashp->dbp)) {
rectype = PUTPAIR;
if (is_databig)
rectype |= PAIR_DATAMASK;
if (is_keybig)
rectype |= PAIR_KEYMASK;
if ((ret = __ham_insdel_log(hashp->dbp->dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, rectype,
hashp->dbp->log_fileid, PGNO(hcp->pagep),
(u_int32_t)H_NUMPAIRS(hcp->pagep),
&LSN(hcp->pagep), pkey, pdata)) != 0)
return (ret);
/* Move lsn onto page. */
LSN(hcp->pagep) = new_lsn; /* Structure assignment. */
}
__ham_putitem(hcp->pagep, pkey, key_type);
__ham_putitem(hcp->pagep, pdata, data_type);
/*
* For splits, we are going to update item_info's page number
* field, so that we can easily return to the same page the
* next time we come in here. For other operations, this shouldn't
* matter, since odds are this is the last thing that happens before
* we return to the user program.
*/
hcp->pgno = PGNO(hcp->pagep);
/*
* XXX Maybe keep incremental numbers here
*/
if (!F_ISSET(hashp->dbp, DB_AM_LOCKING))
hashp->hdr->nelem++;
if (do_expand || (hashp->hdr->ffactor != 0 &&
(u_int32_t)H_NUMPAIRS(hcp->pagep) > hashp->hdr->ffactor))
F_SET(hcp, H_EXPAND);
return (0);
}
/*
* Special __putitem call used in splitting -- copies one entry to
* another. Works for all types of hash entries (H_OFFPAGE, H_KEYDATA,
* H_DUPLICATE, H_OFFDUP). Since we log splits at a high level, we
* do not need to do any logging here.
*
* PUBLIC: void __ham_copy_item __P((HTAB *, PAGE *, u_int32_t, PAGE *));
*/
void
__ham_copy_item(hashp, src_page, src_ndx, dest_page)
HTAB *hashp;
PAGE *src_page;
u_int32_t src_ndx;
PAGE *dest_page;
{
u_int32_t len;
void *src, *dest;
/*
* Copy the key and data entries onto this new page.
*/
src = P_ENTRY(src_page, src_ndx);
/* Set up space on dest. */
len = LEN_HITEM(src_page, hashp->hdr->pagesize, src_ndx);
HOFFSET(dest_page) -= len;
dest_page->inp[NUM_ENT(dest_page)] = HOFFSET(dest_page);
dest = P_ENTRY(dest_page, NUM_ENT(dest_page));
NUM_ENT(dest_page)++;
memcpy(dest, src, len);
}
/*
*
* Returns:
* pointer on success
* NULL on error
*
* PUBLIC: int __ham_add_ovflpage __P((HTAB *, PAGE *, int, PAGE **));
*/
int
__ham_add_ovflpage(hashp, pagep, release, pp)
HTAB *hashp;
PAGE *pagep;
int release;
PAGE **pp;
{
DB_ENV *dbenv;
DB_LSN new_lsn;
PAGE *new_pagep;
int ret;
dbenv = hashp->dbp->dbenv;
if ((ret = __ham_overflow_page(hashp->dbp, P_HASH, &new_pagep)) != 0)
return (ret);
if (DB_LOGGING(hashp->dbp)) {
if ((ret = __ham_newpage_log(dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, PUTOVFL,
hashp->dbp->log_fileid, PGNO(pagep), &LSN(pagep),
PGNO(new_pagep), &LSN(new_pagep), PGNO_INVALID, NULL)) != 0)
return (ret);
/* Move lsn onto page. */
LSN(pagep) = LSN(new_pagep) = new_lsn;
}
NEXT_PGNO(pagep) = PGNO(new_pagep);
PREV_PGNO(new_pagep) = PGNO(pagep);
if (release)
ret = __ham_put_page(hashp->dbp, pagep, 1);
hashp->hash_overflows++;
*pp = new_pagep;
return (ret);
}
/*
* PUBLIC: int __ham_new_page __P((HTAB *, u_int32_t, u_int32_t, PAGE **));
*/
int
__ham_new_page(hashp, addr, type, pp)
HTAB *hashp;
u_int32_t addr, type;
PAGE **pp;
{
PAGE *pagep;
int ret;
if ((ret = memp_fget(hashp->dbp->mpf,
&addr, DB_MPOOL_CREATE, &pagep)) != 0)
return (ret);
#ifdef DEBUG_SLOW
__account_page(hashp, addr, 1);
#endif
/* This should not be necessary because page-in should do it. */
P_INIT(pagep,
hashp->hdr->pagesize, addr, PGNO_INVALID, PGNO_INVALID, 0, type);
*pp = pagep;
return (0);
}
/*
* PUBLIC: int __ham_del_page __P((DB *, PAGE *));
*/
int
__ham_del_page(dbp, pagep)
DB *dbp;
PAGE *pagep;
{
DB_LSN new_lsn;
HTAB *hashp;
int ret;
hashp = (HTAB *)dbp->internal;
ret = 0;
DIRTY_META(hashp, ret);
if (ret != 0) {
if (ret != EAGAIN)
__db_err(hashp->dbp->dbenv,
"free_ovflpage: unable to lock meta data page %s\n",
strerror(ret));
/*
* If we are going to return an error, then we should free
* the page, so it doesn't stay pinned forever.
*/
(void)__ham_put_page(hashp->dbp, pagep, 0);
return (ret);
}
if (DB_LOGGING(hashp->dbp)) {
if ((ret = __ham_newpgno_log(hashp->dbp->dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, DELPGNO,
hashp->dbp->log_fileid, PGNO(pagep), hashp->hdr->last_freed,
(u_int32_t)TYPE(pagep), NEXT_PGNO(pagep), P_INVALID,
&LSN(pagep), &hashp->hdr->lsn)) != 0)
return (ret);
hashp->hdr->lsn = new_lsn;
LSN(pagep) = new_lsn;
}
#ifdef DIAGNOSTIC
{
db_pgno_t __pgno;
DB_LSN __lsn;
__pgno = pagep->pgno;
__lsn = pagep->lsn;
memset(pagep, 0xff, dbp->pgsize);
pagep->pgno = __pgno;
pagep->lsn = __lsn;
}
#endif
TYPE(pagep) = P_INVALID;
NEXT_PGNO(pagep) = hashp->hdr->last_freed;
hashp->hdr->last_freed = PGNO(pagep);
return (__ham_put_page(hashp->dbp, pagep, 1));
}
/*
* PUBLIC: int __ham_put_page __P((DB *, PAGE *, int32_t));
*/
int
__ham_put_page(dbp, pagep, is_dirty)
DB *dbp;
PAGE *pagep;
int32_t is_dirty;
{
#ifdef DEBUG_SLOW
__account_page((HTAB *)dbp->cookie,
((BKT *)((char *)pagep - sizeof(BKT)))->pgno, -1);
#endif
return (memp_fput(dbp->mpf, pagep, (is_dirty ? DB_MPOOL_DIRTY : 0)));
}
/*
* __ham_dirty_page --
* Mark a page dirty.
*
* PUBLIC: int __ham_dirty_page __P((HTAB *, PAGE *));
*/
int
__ham_dirty_page(hashp, pagep)
HTAB *hashp;
PAGE *pagep;
{
return (memp_fset(hashp->dbp->mpf, pagep, DB_MPOOL_DIRTY));
}
/*
* PUBLIC: int __ham_get_page __P((DB *, db_pgno_t, PAGE **));
*/
int
__ham_get_page(dbp, addr, pagep)
DB *dbp;
db_pgno_t addr;
PAGE **pagep;
{
int ret;
ret = memp_fget(dbp->mpf, &addr, DB_MPOOL_CREATE, pagep);
#ifdef DEBUG_SLOW
if (*pagep != NULL)
__account_page((HTAB *)dbp->internal, addr, 1);
#endif
return (ret);
}
/*
* PUBLIC: int __ham_overflow_page __P((DB *, u_int32_t, PAGE **));
*/
int
__ham_overflow_page(dbp, type, pp)
DB *dbp;
u_int32_t type;
PAGE **pp;
{
DB_LSN *lsnp, new_lsn;
HTAB *hashp;
PAGE *p;
db_pgno_t new_addr, next_free, newalloc_flag;
u_int32_t offset, splitnum;
int ret;
hashp = (HTAB *)dbp->internal;
ret = 0;
DIRTY_META(hashp, ret);
if (ret != 0)
return (ret);
/*
* This routine is split up into two parts. First we have
* to figure out the address of the new page that we are
* allocating. Then we have to log the allocation. Only
* after the log do we get to complete allocation of the
* new page.
*/
new_addr = hashp->hdr->last_freed;
if (new_addr != PGNO_INVALID) {
if ((ret = __ham_get_page(hashp->dbp, new_addr, &p)) != 0)
return (ret);
next_free = NEXT_PGNO(p);
lsnp = &LSN(p);
newalloc_flag = 0;
} else {
splitnum = hashp->hdr->ovfl_point;
hashp->hdr->spares[splitnum]++;
offset = hashp->hdr->spares[splitnum] -
(splitnum ? hashp->hdr->spares[splitnum - 1] : 0);
new_addr = PGNO_OF(hashp, hashp->hdr->ovfl_point, offset);
if (new_addr > MAX_PAGES(hashp)) {
__db_err(hashp->dbp->dbenv, "hash: out of file pages");
hashp->hdr->spares[splitnum]--;
return (ENOMEM);
}
next_free = PGNO_INVALID;
p = NULL;
lsnp = NULL;
newalloc_flag = 1;
}
if (DB_LOGGING(hashp->dbp)) {
if ((ret = __ham_newpgno_log(hashp->dbp->dbenv->lg_info,
(DB_TXN *)hashp->dbp->txn, &new_lsn, 0, ALLOCPGNO,
hashp->dbp->log_fileid, new_addr, next_free,
0, newalloc_flag, type, lsnp, &hashp->hdr->lsn)) != 0)
return (ret);
hashp->hdr->lsn = new_lsn;
if (lsnp != NULL)
*lsnp = new_lsn;
}
if (p != NULL) {
/* We just took something off the free list, initialize it. */
hashp->hdr->last_freed = next_free;
P_INIT(p, hashp->hdr->pagesize, PGNO(p), PGNO_INVALID,
PGNO_INVALID, 0, (u_int8_t)type);
} else {
/* Get the new page. */
if ((ret = __ham_new_page(hashp, new_addr, type, &p)) != 0)
return (ret);
}
if (DB_LOGGING(hashp->dbp))
LSN(p) = new_lsn;
*pp = p;
return (0);
}
#ifdef DEBUG
/*
* PUBLIC: #ifdef DEBUG
* PUBLIC: db_pgno_t __bucket_to_page __P((HTAB *, db_pgno_t));
* PUBLIC: #endif
*/
db_pgno_t
__bucket_to_page(hashp, n)
HTAB *hashp;
db_pgno_t n;
{
int ret_val;
ret_val = n + 1;
if (n != 0)
ret_val += hashp->hdr->spares[__db_log2(n + 1) - 1];
return (ret_val);
}
#endif
/*
* Create a bunch of overflow pages at the current split point.
* PUBLIC: void __ham_init_ovflpages __P((HTAB *));
*/
void
__ham_init_ovflpages(hp)
HTAB *hp;
{
DB_LSN new_lsn;
PAGE *p;
db_pgno_t last_pgno, new_pgno;
u_int32_t i, curpages, numpages;
curpages = hp->hdr->spares[hp->hdr->ovfl_point] -
hp->hdr->spares[hp->hdr->ovfl_point - 1];
numpages = hp->hdr->ovfl_point + 1 - curpages;
last_pgno = hp->hdr->last_freed;
new_pgno = PGNO_OF(hp, hp->hdr->ovfl_point, curpages + 1);
if (DB_LOGGING(hp->dbp)) {
(void)__ham_ovfl_log(hp->dbp->dbenv->lg_info,
(DB_TXN *)hp->dbp->txn, &new_lsn, 0,
hp->dbp->log_fileid, new_pgno,
numpages, last_pgno, hp->hdr->ovfl_point, &hp->hdr->lsn);
hp->hdr->lsn = new_lsn;
} else
ZERO_LSN(new_lsn);
hp->hdr->spares[hp->hdr->ovfl_point] += numpages;
for (i = numpages; i > 0; i--) {
if (__ham_new_page(hp,
PGNO_OF(hp, hp->hdr->ovfl_point, curpages + i),
P_INVALID, &p) != 0)
break;
LSN(p) = new_lsn;
NEXT_PGNO(p) = last_pgno;
last_pgno = PGNO(p);
(void)__ham_put_page(hp->dbp, p, 1);
}
hp->hdr->last_freed = last_pgno;
}
/*
* PUBLIC: int __ham_get_cpage __P((HTAB *, HASH_CURSOR *, db_lockmode_t));
*/
int
__ham_get_cpage(hashp, hcp, mode)
HTAB *hashp;
HASH_CURSOR *hcp;
db_lockmode_t mode;
{
int ret;
if (hcp->lock == 0 && F_ISSET(hashp->dbp, DB_AM_LOCKING) &&
(ret = __ham_lock_bucket(hashp->dbp, hcp, mode)) != 0)
return (ret);
if (hcp->pagep == NULL) {
if (hcp->pgno == PGNO_INVALID) {
hcp->pgno = BUCKET_TO_PAGE(hashp, hcp->bucket);
hcp->bndx = 0;
}
if ((ret =
__ham_get_page(hashp->dbp, hcp->pgno, &hcp->pagep)) != 0)
return (ret);
}
if (hcp->dpgno != PGNO_INVALID && hcp->dpagep == NULL)
if ((ret =
__ham_get_page(hashp->dbp, hcp->dpgno, &hcp->dpagep)) != 0)
return (ret);
return (0);
}
/*
* Get a new page at the cursor, putting the last page if necessary.
* If the flag is set to H_ISDUP, then we are talking about the
* duplicate page, not the main page.
*
* PUBLIC: int __ham_next_cpage
* PUBLIC: __P((HTAB *, HASH_CURSOR *, db_pgno_t, int, u_int32_t));
*/
int
__ham_next_cpage(hashp, hcp, pgno, dirty, flags)
HTAB *hashp;
HASH_CURSOR *hcp;
db_pgno_t pgno;
int dirty;
u_int32_t flags;
{
PAGE *p;
int ret;
if (LF_ISSET(H_ISDUP) && hcp->dpagep != NULL &&
(ret = __ham_put_page(hashp->dbp, hcp->dpagep, dirty)) != 0)
return (ret);
else if (!LF_ISSET(H_ISDUP) && hcp->pagep != NULL &&
(ret = __ham_put_page(hashp->dbp, hcp->pagep, dirty)) != 0)
return (ret);
if ((ret = __ham_get_page(hashp->dbp, pgno, &p)) != 0)
return (ret);
if (LF_ISSET(H_ISDUP)) {
hcp->dpagep = p;
hcp->dpgno = pgno;
hcp->dndx = 0;
} else {
hcp->pagep = p;
hcp->pgno = pgno;
hcp->bndx = 0;
}
return (0);
}
/*
* __ham_lock_bucket --
* Get the lock on a particular bucket.
*/
static int
__ham_lock_bucket(dbp, hcp, mode)
DB *dbp;
HASH_CURSOR *hcp;
db_lockmode_t mode;
{
int ret;
/*
* What a way to trounce on the memory system. It might be
* worth copying the lk_info into the hashp.
*/
ret = 0;
dbp->lock.pgno = (db_pgno_t)(hcp->bucket);
ret = lock_get(dbp->dbenv->lk_info,
dbp->txn == NULL ? dbp->locker : dbp->txn->txnid, 0,
&dbp->lock_dbt, mode, &hcp->lock);
return (ret < 0 ? EAGAIN : ret);
}
/*
* __ham_dpair --
* Delete a pair on a page, paying no attention to what the pair
* represents. The caller is responsible for freeing up duplicates
* or offpage entries that might be referenced by this pair.
*
* PUBLIC: void __ham_dpair __P((DB *, PAGE *, u_int32_t));
*/
void
__ham_dpair(dbp, p, pndx)
DB *dbp;
PAGE *p;
u_int32_t pndx;
{
db_indx_t delta, n;
u_int8_t *dest, *src;
/*
* Compute "delta", the amount we have to shift all of the
* offsets. To find the delta, we just need to calculate
* the size of the pair of elements we are removing.
*/
delta = H_PAIRSIZE(p, dbp->pgsize, pndx);
/*
* The hard case: we want to remove something other than
* the last item on the page. We need to shift data and
* offsets down.
*/
if ((db_indx_t)pndx != H_NUMPAIRS(p) - 1) {
/*
* Move the data: src is the first occupied byte on
* the page. (Length is delta.)
*/
src = (u_int8_t *)p + HOFFSET(p);
/*
* Destination is delta bytes beyond src. This might
* be an overlapping copy, so we have to use memmove.
*/
dest = src + delta;
memmove(dest, src, p->inp[H_DATAINDEX(pndx)] - HOFFSET(p));
}
/* Adjust the offsets. */
for (n = (db_indx_t)pndx; n < (db_indx_t)(H_NUMPAIRS(p) - 1); n++) {
p->inp[H_KEYINDEX(n)] = p->inp[H_KEYINDEX(n+1)] + delta;
p->inp[H_DATAINDEX(n)] = p->inp[H_DATAINDEX(n+1)] + delta;
}
/* Adjust page metadata. */
HOFFSET(p) = HOFFSET(p) + delta;
NUM_ENT(p) = NUM_ENT(p) - 2;
}
#ifdef DEBUG_SLOW
static void
__account_page(hashp, pgno, inout)
HTAB *hashp;
db_pgno_t pgno;
int inout;
{
static struct {
db_pgno_t pgno;
int times;
} list[100];
static int last;
int i, j;
if (inout == -1) /* XXX: Kluge */
inout = 0;
/* Find page in list. */
for (i = 0; i < last; i++)
if (list[i].pgno == pgno)
break;
/* Not found. */
if (i == last) {
list[last].times = inout;
list[last].pgno = pgno;
last++;
}
list[i].times = inout;
if (list[i].times == 0) {
for (j = i; j < last; j++)
list[j] = list[j + 1];
last--;
}
for (i = 0; i < last; i++, list[i].times++)
if (list[i].times > 20 &&
!__is_bitmap_pgno(hashp, list[i].pgno))
(void)fprintf(stderr,
"Warning: pg %lu has been out for %d times\n",
(u_long)list[i].pgno, list[i].times);
}
#endif /* DEBUG_SLOW */