mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-27 05:00:15 +00:00
8e17ea5817
2000-06-09 Ulrich Drepper <drepper@redhat.com> Rewrite error message handling. * elf/dl-deps.c (_dl_map_object_deps): Pass new parameter to _dl_catch_error. * elf/dl-error (struct catch): Add objname member. (_dl_signal_error): Take new parameter with object name. When passing message on simply store object name and duplicate error message. (_dl_catch_error): Take new parameter. Store object name in the place pointed to. * include/dlfcn.h: Adjust _dl_catch_error prototype. * sysdeps/generic/ldsodefs.h: Adjust _dl_signal_error prototype. * elf/dl-libc.c (dlerror_run): Pass new parameter to _dl_catch_error. * elf/dl-open.c (_dl_open): Likewise. * elf/rtld.c (dl_main): Likewise. * elf/dl-close.c: Mark error messages with N_(). * elf/dl-deps.c: Likewise. * elf/dl-error.c: Likewise. * elf/dl-load.c: Likewise. * elf/dl-open.c: Likewise. * elf/dl-reloc.c: Likewise. * elf/dl-support.c: Likewise. * elf/dl-sym.c: Likewise. * elf/dl-version.c: Likewise. * elf/dl-lookup.c: Add comments about problems with error message translations. * elf/dl-reloc.c: Likewise. * elf/dl-version.c: Likewise.
673 lines
22 KiB
C
673 lines
22 KiB
C
/* Look up a symbol in the loaded objects.
|
|
Copyright (C) 1995,96,97,98,99,2000 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <alloca.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <ldsodefs.h>
|
|
#include "dl-hash.h"
|
|
#include <dl-machine.h>
|
|
#include <bits/libc-lock.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#define VERSTAG(tag) (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGIDX (tag))
|
|
|
|
/* We need this string more than once. */
|
|
static const char undefined_msg[] = "undefined symbol: ";
|
|
|
|
|
|
struct sym_val
|
|
{
|
|
const ElfW(Sym) *s;
|
|
struct link_map *m;
|
|
};
|
|
|
|
|
|
#define make_string(string, rest...) \
|
|
({ \
|
|
const char *all[] = { string, ## rest }; \
|
|
size_t len, cnt; \
|
|
char *result, *cp; \
|
|
\
|
|
len = 1; \
|
|
for (cnt = 0; cnt < sizeof (all) / sizeof (all[0]); ++cnt) \
|
|
len += strlen (all[cnt]); \
|
|
\
|
|
cp = result = alloca (len); \
|
|
for (cnt = 0; cnt < sizeof (all) / sizeof (all[0]); ++cnt) \
|
|
cp = __stpcpy (cp, all[cnt]); \
|
|
\
|
|
result; \
|
|
})
|
|
|
|
/* Statistics function. */
|
|
unsigned long int _dl_num_relocations;
|
|
|
|
/* During the program run we must not modify the global data of
|
|
loaded shared object simultanously in two threads. Therefore we
|
|
protect `_dl_open' and `_dl_close' in dl-close.c.
|
|
|
|
This must be a recursive lock since the initializer function of
|
|
the loaded object might as well require a call to this function.
|
|
At this time it is not anymore a problem to modify the tables. */
|
|
__libc_lock_define (extern, _dl_load_lock)
|
|
|
|
|
|
/* We have two different situations when looking up a simple: with or
|
|
without versioning. gcc is not able to optimize a single function
|
|
definition serving for both purposes so we define two functions. */
|
|
#define VERSIONED 0
|
|
#define PROTECTED 0
|
|
#include "do-lookup.h"
|
|
|
|
#define VERSIONED 1
|
|
#define PROTECTED 0
|
|
#include "do-lookup.h"
|
|
|
|
|
|
/* Add extra dependency on MAP to UNDEF_MAP. */
|
|
static int
|
|
add_dependency (struct link_map *undef_map, struct link_map *map)
|
|
{
|
|
struct link_map **list;
|
|
unsigned int act;
|
|
unsigned int i;
|
|
int result = 0;
|
|
|
|
/* Make sure nobody can unload the object while we are at it. */
|
|
__libc_lock_lock (_dl_load_lock);
|
|
|
|
/* Determine whether UNDEF_MAP already has a reference to MAP. First
|
|
look in the normal dependencies. */
|
|
list = undef_map->l_searchlist.r_list;
|
|
act = undef_map->l_searchlist.r_nlist;
|
|
|
|
for (i = 0; i < act; ++i)
|
|
if (list[i] == map)
|
|
break;
|
|
|
|
if (__builtin_expect (i == act, 1))
|
|
{
|
|
/* No normal dependency. See whether we already had to add it
|
|
to the special list of dynamic dependencies. */
|
|
list = undef_map->l_reldeps;
|
|
act = undef_map->l_reldepsact;
|
|
|
|
for (i = 0; i < act; ++i)
|
|
if (list[i] == map)
|
|
break;
|
|
|
|
if (i == act)
|
|
{
|
|
/* The object is not yet in the dependency list. Before we add
|
|
it make sure just one more time the object we are about to
|
|
reference is still available. There is a brief period in
|
|
which the object could have been removed since we found the
|
|
definition. */
|
|
struct link_map *runp = _dl_loaded;
|
|
|
|
while (runp != NULL && runp != map)
|
|
runp = runp->l_next;
|
|
|
|
if (runp != NULL)
|
|
{
|
|
/* The object is still available. Add the reference now. */
|
|
if (__builtin_expect (act >= undef_map->l_reldepsmax, 0))
|
|
{
|
|
/* Allocate more memory for the dependency list. Since
|
|
this can never happen during the startup phase we can
|
|
use `realloc'. */
|
|
void *newp;
|
|
|
|
undef_map->l_reldepsmax += 5;
|
|
newp = realloc (undef_map->l_reldeps,
|
|
undef_map->l_reldepsmax
|
|
* sizeof(struct link_map *));
|
|
|
|
if (__builtin_expect (newp != NULL, 1))
|
|
undef_map->l_reldeps = (struct link_map **) newp;
|
|
else
|
|
/* Correct the addition. */
|
|
undef_map->l_reldepsmax -= 5;
|
|
}
|
|
|
|
/* If we didn't manage to allocate memory for the list this
|
|
is no fatal mistake. We simply increment the use counter
|
|
of the referenced object and don't record the dependencies.
|
|
This means this increment can never be reverted and the
|
|
object will never be unloaded. This is semantically the
|
|
correct behaviour. */
|
|
if (__builtin_expect (act < undef_map->l_reldepsmax, 1))
|
|
undef_map->l_reldeps[undef_map->l_reldepsact++] = map;
|
|
|
|
/* And increment the counter in the referenced object. */
|
|
++map->l_opencount;
|
|
|
|
/* Display information if we are debugging. */
|
|
if (__builtin_expect (_dl_debug_files, 0))
|
|
_dl_debug_message (1, "\nfile=",
|
|
map->l_name[0] ? map->l_name : _dl_argv[0],
|
|
"; needed by ",
|
|
undef_map->l_name[0]
|
|
? undef_map->l_name : _dl_argv[0],
|
|
" (relocation dependency)\n\n", NULL);
|
|
}
|
|
else
|
|
/* Whoa, that was bad luck. We have to search again. */
|
|
result = -1;
|
|
}
|
|
}
|
|
|
|
/* Release the lock. */
|
|
__libc_lock_unlock (_dl_load_lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Search loaded objects' symbol tables for a definition of the symbol
|
|
UNDEF_NAME. */
|
|
|
|
lookup_t
|
|
internal_function
|
|
_dl_lookup_symbol (const char *undef_name, struct link_map *undef_map,
|
|
const ElfW(Sym) **ref, struct r_scope_elem *symbol_scope[],
|
|
int reloc_type)
|
|
{
|
|
const char *reference_name = undef_map ? undef_map->l_name : NULL;
|
|
const unsigned long int hash = _dl_elf_hash (undef_name);
|
|
struct sym_val current_value = { NULL, NULL };
|
|
struct r_scope_elem **scope;
|
|
int protected;
|
|
int noexec = elf_machine_lookup_noexec_p (reloc_type);
|
|
int noplt = elf_machine_lookup_noplt_p (reloc_type);
|
|
|
|
++_dl_num_relocations;
|
|
|
|
/* Search the relevant loaded objects for a definition. */
|
|
for (scope = symbol_scope; *scope; ++scope)
|
|
if (do_lookup (undef_name, undef_map, hash, *ref, ¤t_value,
|
|
*scope, 0, NULL, noexec, noplt))
|
|
{
|
|
/* We have to check whether this would bind UNDEF_MAP to an object
|
|
in the global scope which was dynamically loaded. In this case
|
|
we have to prevent the latter from being unloaded unless the
|
|
UNDEF_MAP object is also unloaded. */
|
|
if (__builtin_expect (current_value.m->l_global, 0)
|
|
&& (__builtin_expect (current_value.m->l_type, lt_library)
|
|
== lt_loaded)
|
|
&& undef_map != current_value.m
|
|
/* Add UNDEF_MAP to the dependencies. */
|
|
&& add_dependency (undef_map, current_value.m) < 0)
|
|
/* Something went wrong. Perhaps the object we tried to reference
|
|
was just removed. Try finding another definition. */
|
|
return _dl_lookup_symbol (undef_name, undef_map, ref, symbol_scope,
|
|
reloc_type);
|
|
|
|
break;
|
|
}
|
|
|
|
if (__builtin_expect (current_value.s == NULL, 0))
|
|
{
|
|
if (*ref == NULL || ELFW(ST_BIND) ((*ref)->st_info) != STB_WEAK)
|
|
/* We could find no value for a strong reference. */
|
|
/* XXX We cannot translate the messages. */
|
|
_dl_signal_cerror (0, (reference_name && reference_name[0]
|
|
? reference_name
|
|
: (_dl_argv[0] ?: "<main program>")),
|
|
make_string (undefined_msg, undef_name));
|
|
*ref = NULL;
|
|
return 0;
|
|
}
|
|
|
|
protected = *ref && ELFW(ST_VISIBILITY) ((*ref)->st_other) == STV_PROTECTED;
|
|
|
|
if (__builtin_expect (_dl_debug_bindings, 0))
|
|
_dl_debug_message (1, "binding file ",
|
|
(reference_name && reference_name[0]
|
|
? reference_name
|
|
: (_dl_argv[0] ?: "<main program>")),
|
|
" to ", current_value.m->l_name[0]
|
|
? current_value.m->l_name : _dl_argv[0],
|
|
": ", protected ? "protected" : "normal",
|
|
" symbol `", undef_name, "'\n", NULL);
|
|
|
|
if (__builtin_expect (protected == 0, 1))
|
|
{
|
|
*ref = current_value.s;
|
|
return LOOKUP_VALUE (current_value.m);
|
|
}
|
|
else
|
|
{
|
|
/* It is very tricky. We need to figure out what value to
|
|
return for the protected symbol */
|
|
struct sym_val protected_value = { NULL, NULL };
|
|
|
|
for (scope = symbol_scope; *scope; ++scope)
|
|
if (do_lookup (undef_name, undef_map, hash, *ref,
|
|
&protected_value, *scope, 0, NULL, 0, 1))
|
|
break;
|
|
|
|
if (protected_value.s == NULL || protected_value.m == undef_map)
|
|
{
|
|
*ref = current_value.s;
|
|
return LOOKUP_VALUE (current_value.m);
|
|
}
|
|
|
|
return LOOKUP_VALUE (undef_map);
|
|
}
|
|
}
|
|
|
|
|
|
/* This function is nearly the same as `_dl_lookup_symbol' but it
|
|
skips in the first list all objects until SKIP_MAP is found. I.e.,
|
|
it only considers objects which were loaded after the described
|
|
object. If there are more search lists the object described by
|
|
SKIP_MAP is only skipped. */
|
|
lookup_t
|
|
internal_function
|
|
_dl_lookup_symbol_skip (const char *undef_name,
|
|
struct link_map *undef_map, const ElfW(Sym) **ref,
|
|
struct r_scope_elem *symbol_scope[],
|
|
struct link_map *skip_map)
|
|
{
|
|
const char *reference_name = undef_map ? undef_map->l_name : NULL;
|
|
const unsigned long int hash = _dl_elf_hash (undef_name);
|
|
struct sym_val current_value = { NULL, NULL };
|
|
struct r_scope_elem **scope;
|
|
size_t i;
|
|
int protected;
|
|
|
|
++_dl_num_relocations;
|
|
|
|
/* Search the relevant loaded objects for a definition. */
|
|
scope = symbol_scope;
|
|
for (i = 0; (*scope)->r_duplist[i] != skip_map; ++i)
|
|
assert (i < (*scope)->r_nduplist);
|
|
|
|
if (i < (*scope)->r_nlist
|
|
&& do_lookup (undef_name, undef_map, hash, *ref, ¤t_value,
|
|
*scope, i, skip_map, 0, 0))
|
|
{
|
|
/* We have to check whether this would bind UNDEF_MAP to an object
|
|
in the global scope which was dynamically loaded. In this case
|
|
we have to prevent the latter from being unloaded unless the
|
|
UNDEF_MAP object is also unloaded. */
|
|
if (current_value.m->l_global
|
|
&& (__builtin_expect (current_value.m->l_type, lt_library)
|
|
== lt_loaded)
|
|
&& undef_map != current_value.m
|
|
/* Add UNDEF_MAP to the dependencies. */
|
|
&& add_dependency (undef_map, current_value.m) < 0)
|
|
/* Something went wrong. Perhaps the object we tried to reference
|
|
was just removed. Try finding another definition. */
|
|
return _dl_lookup_symbol_skip (undef_name, undef_map, ref,
|
|
symbol_scope, skip_map);
|
|
}
|
|
else
|
|
while (*++scope)
|
|
if (do_lookup (undef_name, undef_map, hash, *ref, ¤t_value,
|
|
*scope, 0, skip_map, 0, 0))
|
|
{
|
|
/* We have to check whether this would bind UNDEF_MAP to an object
|
|
in the global scope which was dynamically loaded. In this case
|
|
we have to prevent the latter from being unloaded unless the
|
|
UNDEF_MAP object is also unloaded. */
|
|
if (__builtin_expect (current_value.m->l_global, 0)
|
|
&& (__builtin_expect (current_value.m->l_type, lt_library)
|
|
== lt_loaded)
|
|
&& undef_map != current_value.m
|
|
/* Add UNDEF_MAP to the dependencies. */
|
|
&& add_dependency (undef_map, current_value.m) < 0)
|
|
/* Something went wrong. Perhaps the object we tried to reference
|
|
was just removed. Try finding another definition. */
|
|
return _dl_lookup_symbol_skip (undef_name, undef_map, ref,
|
|
symbol_scope, skip_map);
|
|
|
|
break;
|
|
}
|
|
|
|
if (__builtin_expect (current_value.s == NULL, 0))
|
|
{
|
|
*ref = NULL;
|
|
return 0;
|
|
}
|
|
|
|
protected = *ref && ELFW(ST_VISIBILITY) ((*ref)->st_other) == STV_PROTECTED;
|
|
|
|
if (__builtin_expect (_dl_debug_bindings, 0))
|
|
_dl_debug_message (1, "binding file ",
|
|
(reference_name && reference_name[0]
|
|
? reference_name
|
|
: (_dl_argv[0] ?: "<main program>")),
|
|
" to ", current_value.m->l_name[0]
|
|
? current_value.m->l_name : _dl_argv[0],
|
|
": ", protected ? "protected" : "normal",
|
|
" symbol `", undef_name, "'\n", NULL);
|
|
|
|
if (__builtin_expect (protected == 0, 1))
|
|
{
|
|
*ref = current_value.s;
|
|
return LOOKUP_VALUE (current_value.m);
|
|
}
|
|
else
|
|
{
|
|
/* It is very tricky. We need to figure out what value to
|
|
return for the protected symbol */
|
|
struct sym_val protected_value = { NULL, NULL };
|
|
|
|
if (i >= (*scope)->r_nlist
|
|
|| !do_lookup (undef_name, undef_map, hash, *ref, &protected_value,
|
|
*scope, i, skip_map, 0, 1))
|
|
while (*++scope)
|
|
if (do_lookup (undef_name, undef_map, hash, *ref, &protected_value,
|
|
*scope, 0, skip_map, 0, 1))
|
|
break;
|
|
|
|
if (protected_value.s == NULL || protected_value.m == undef_map)
|
|
{
|
|
*ref = current_value.s;
|
|
return LOOKUP_VALUE (current_value.m);
|
|
}
|
|
|
|
return LOOKUP_VALUE (undef_map);
|
|
}
|
|
}
|
|
|
|
|
|
/* This function works like _dl_lookup_symbol but it takes an
|
|
additional arguement with the version number of the requested
|
|
symbol.
|
|
|
|
XXX We'll see whether we need this separate function. */
|
|
lookup_t
|
|
internal_function
|
|
_dl_lookup_versioned_symbol (const char *undef_name,
|
|
struct link_map *undef_map, const ElfW(Sym) **ref,
|
|
struct r_scope_elem *symbol_scope[],
|
|
const struct r_found_version *version,
|
|
int reloc_type)
|
|
{
|
|
const char *reference_name = undef_map ? undef_map->l_name : NULL;
|
|
const unsigned long int hash = _dl_elf_hash (undef_name);
|
|
struct sym_val current_value = { NULL, NULL };
|
|
struct r_scope_elem **scope;
|
|
int protected;
|
|
int noexec = elf_machine_lookup_noexec_p (reloc_type);
|
|
int noplt = elf_machine_lookup_noplt_p (reloc_type);
|
|
|
|
++_dl_num_relocations;
|
|
|
|
/* Search the relevant loaded objects for a definition. */
|
|
for (scope = symbol_scope; *scope; ++scope)
|
|
{
|
|
int res = do_lookup_versioned (undef_name, undef_map, hash, *ref,
|
|
¤t_value, *scope, 0, version, NULL,
|
|
noexec, noplt);
|
|
if (res > 0)
|
|
{
|
|
/* We have to check whether this would bind UNDEF_MAP to an object
|
|
in the global scope which was dynamically loaded. In this case
|
|
we have to prevent the latter from being unloaded unless the
|
|
UNDEF_MAP object is also unloaded. */
|
|
if (__builtin_expect (current_value.m->l_global, 0)
|
|
&& (__builtin_expect (current_value.m->l_type, lt_library)
|
|
== lt_loaded)
|
|
&& undef_map != current_value.m
|
|
/* Add UNDEF_MAP to the dependencies. */
|
|
&& add_dependency (undef_map, current_value.m) < 0)
|
|
/* Something went wrong. Perhaps the object we tried to reference
|
|
was just removed. Try finding another definition. */
|
|
return _dl_lookup_versioned_symbol (undef_name, undef_map, ref,
|
|
symbol_scope, version,
|
|
reloc_type);
|
|
|
|
break;
|
|
}
|
|
|
|
if (__builtin_expect (res, 0) < 0)
|
|
{
|
|
/* Oh, oh. The file named in the relocation entry does not
|
|
contain the needed symbol. */
|
|
/* XXX We cannot translate the message. */
|
|
_dl_signal_cerror (0, (reference_name && reference_name[0]
|
|
? reference_name
|
|
: (_dl_argv[0] ?: "<main program>")),
|
|
make_string ("symbol ", undef_name, ", version ",
|
|
version->name,
|
|
" not defined in file ",
|
|
version->filename,
|
|
" with link time reference",
|
|
res == -2
|
|
? " (no version symbols)" : ""));
|
|
*ref = NULL;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (__builtin_expect (current_value.s == NULL, 0))
|
|
{
|
|
if (*ref == NULL || ELFW(ST_BIND) ((*ref)->st_info) != STB_WEAK)
|
|
/* We could find no value for a strong reference. */
|
|
/* XXX We cannot translate the message. */
|
|
_dl_signal_cerror (0, (reference_name && reference_name[0]
|
|
? reference_name
|
|
: (_dl_argv[0] ?: "<main program>")),
|
|
make_string (undefined_msg, undef_name,
|
|
", version ", version->name ?: NULL));
|
|
*ref = NULL;
|
|
return 0;
|
|
}
|
|
|
|
protected = *ref && ELFW(ST_VISIBILITY) ((*ref)->st_other) == STV_PROTECTED;
|
|
|
|
if (__builtin_expect (_dl_debug_bindings, 0))
|
|
_dl_debug_message (1, "binding file ",
|
|
(reference_name && reference_name[0]
|
|
? reference_name
|
|
: (_dl_argv[0] ?: "<main program>")),
|
|
" to ", current_value.m->l_name[0]
|
|
? current_value.m->l_name : _dl_argv[0],
|
|
": ", protected ? "protected" : "normal",
|
|
" symbol `", undef_name, "' [", version->name,
|
|
"]\n", NULL);
|
|
|
|
if (__builtin_expect (protected == 0, 1))
|
|
{
|
|
*ref = current_value.s;
|
|
return LOOKUP_VALUE (current_value.m);
|
|
}
|
|
else
|
|
{
|
|
/* It is very tricky. We need to figure out what value to
|
|
return for the protected symbol */
|
|
struct sym_val protected_value = { NULL, NULL };
|
|
|
|
for (scope = symbol_scope; *scope; ++scope)
|
|
if (do_lookup_versioned (undef_name, undef_map, hash, *ref,
|
|
&protected_value, *scope, 0, version, NULL,
|
|
0, 1))
|
|
break;
|
|
|
|
if (protected_value.s == NULL || protected_value.m == undef_map)
|
|
{
|
|
*ref = current_value.s;
|
|
return LOOKUP_VALUE (current_value.m);
|
|
}
|
|
|
|
return LOOKUP_VALUE (undef_map);
|
|
}
|
|
}
|
|
|
|
|
|
/* Similar to _dl_lookup_symbol_skip but takes an additional argument
|
|
with the version we are looking for. */
|
|
lookup_t
|
|
internal_function
|
|
_dl_lookup_versioned_symbol_skip (const char *undef_name,
|
|
struct link_map *undef_map,
|
|
const ElfW(Sym) **ref,
|
|
struct r_scope_elem *symbol_scope[],
|
|
const struct r_found_version *version,
|
|
struct link_map *skip_map)
|
|
{
|
|
const char *reference_name = undef_map ? undef_map->l_name : NULL;
|
|
const unsigned long int hash = _dl_elf_hash (undef_name);
|
|
struct sym_val current_value = { NULL, NULL };
|
|
struct r_scope_elem **scope;
|
|
size_t i;
|
|
int protected;
|
|
|
|
++_dl_num_relocations;
|
|
|
|
/* Search the relevant loaded objects for a definition. */
|
|
scope = symbol_scope;
|
|
for (i = 0; (*scope)->r_duplist[i] != skip_map; ++i)
|
|
assert (i < (*scope)->r_nduplist);
|
|
|
|
if (i < (*scope)->r_nlist
|
|
&& do_lookup_versioned (undef_name, undef_map, hash, *ref,
|
|
¤t_value, *scope, i, version, skip_map,
|
|
0, 0))
|
|
{
|
|
/* We have to check whether this would bind UNDEF_MAP to an object
|
|
in the global scope which was dynamically loaded. In this case
|
|
we have to prevent the latter from being unloaded unless the
|
|
UNDEF_MAP object is also unloaded. */
|
|
if (__builtin_expect (current_value.m->l_global, 0)
|
|
&& (__builtin_expect (current_value.m->l_type, lt_library)
|
|
== lt_loaded)
|
|
&& undef_map != current_value.m
|
|
/* Add UNDEF_MAP to the dependencies. */
|
|
&& add_dependency (undef_map, current_value.m) < 0)
|
|
/* Something went wrong. Perhaps the object we tried to reference
|
|
was just removed. Try finding another definition. */
|
|
return _dl_lookup_versioned_symbol_skip (undef_name, undef_map, ref,
|
|
symbol_scope, version,
|
|
skip_map);
|
|
}
|
|
else
|
|
while (*++scope)
|
|
if (do_lookup_versioned (undef_name, undef_map, hash, *ref,
|
|
¤t_value, *scope, 0, version, skip_map,
|
|
0, 0))
|
|
{
|
|
/* We have to check whether this would bind UNDEF_MAP to an object
|
|
in the global scope which was dynamically loaded. In this case
|
|
we have to prevent the latter from being unloaded unless the
|
|
UNDEF_MAP object is also unloaded. */
|
|
if (current_value.m->l_global
|
|
&& (__builtin_expect (current_value.m->l_type, lt_library)
|
|
== lt_loaded)
|
|
&& undef_map != current_value.m
|
|
/* Add UNDEF_MAP to the dependencies. */
|
|
&& add_dependency (undef_map, current_value.m) < 0)
|
|
/* Something went wrong. Perhaps the object we tried to reference
|
|
was just removed. Try finding another definition. */
|
|
return _dl_lookup_versioned_symbol_skip (undef_name, undef_map,
|
|
ref, symbol_scope,
|
|
version, skip_map);
|
|
break;
|
|
}
|
|
|
|
if (__builtin_expect (current_value.s == NULL, 0))
|
|
{
|
|
if (*ref == NULL || ELFW(ST_BIND) ((*ref)->st_info) != STB_WEAK)
|
|
{
|
|
/* We could find no value for a strong reference. */
|
|
const size_t len = strlen (undef_name);
|
|
char buf[sizeof undefined_msg + len];
|
|
__mempcpy (__mempcpy (buf, undefined_msg, sizeof undefined_msg - 1),
|
|
undef_name, len + 1);
|
|
/* XXX We cannot translate the messages. */
|
|
_dl_signal_cerror (0, (reference_name && reference_name[0]
|
|
? reference_name
|
|
: (_dl_argv[0] ?: "<main program>")), buf);
|
|
}
|
|
*ref = NULL;
|
|
return 0;
|
|
}
|
|
|
|
protected = *ref && ELFW(ST_VISIBILITY) ((*ref)->st_other) == STV_PROTECTED;
|
|
|
|
if (__builtin_expect (_dl_debug_bindings, 0))
|
|
_dl_debug_message (1, "binding file ",
|
|
(reference_name && reference_name[0]
|
|
? reference_name
|
|
: (_dl_argv[0] ?: "<main program>")),
|
|
" to ", current_value.m->l_name[0]
|
|
? current_value.m->l_name : _dl_argv[0],
|
|
": ", protected ? "protected" : "normal",
|
|
" symbol `", undef_name, "' [", version->name,
|
|
"]\n", NULL);
|
|
|
|
if (__builtin_expect (protected == 0, 1))
|
|
{
|
|
*ref = current_value.s;
|
|
return LOOKUP_VALUE (current_value.m);
|
|
}
|
|
else
|
|
{
|
|
/* It is very tricky. We need to figure out what value to
|
|
return for the protected symbol */
|
|
struct sym_val protected_value = { NULL, NULL };
|
|
|
|
if (i >= (*scope)->r_nlist
|
|
|| !do_lookup_versioned (undef_name, undef_map, hash, *ref,
|
|
&protected_value, *scope, i, version,
|
|
skip_map, 0, 1))
|
|
while (*++scope)
|
|
if (do_lookup_versioned (undef_name, undef_map, hash, *ref,
|
|
&protected_value, *scope, 0, version,
|
|
skip_map, 0, 1))
|
|
break;
|
|
|
|
if (protected_value.s == NULL || protected_value.m == undef_map)
|
|
{
|
|
*ref = current_value.s;
|
|
return LOOKUP_VALUE (current_value.m);
|
|
}
|
|
|
|
return LOOKUP_VALUE (undef_map);
|
|
}
|
|
}
|
|
|
|
|
|
/* Cache the location of MAP's hash table. */
|
|
|
|
void
|
|
internal_function
|
|
_dl_setup_hash (struct link_map *map)
|
|
{
|
|
Elf_Symndx *hash;
|
|
Elf_Symndx nchain;
|
|
|
|
if (!map->l_info[DT_HASH])
|
|
return;
|
|
hash = (void *)(map->l_addr + map->l_info[DT_HASH]->d_un.d_ptr);
|
|
|
|
map->l_nbuckets = *hash++;
|
|
nchain = *hash++;
|
|
map->l_buckets = hash;
|
|
hash += map->l_nbuckets;
|
|
map->l_chain = hash;
|
|
}
|