glibc/sysdeps/ieee754/ldbl-128ibm/e_fmodl.c
Joseph Myers 0fed79a827 Fix ldbl-128ibm fmodl handling of equal arguments with low part zero (bug 19602).
The ldbl-128ibm implementation of fmodl has logic to detect when the
first argument has absolute value less than or equal to the second.
This logic is only correct for nonzero low parts; if the high parts
are equal and the low parts are zero, then the signs of the low parts
(which have no semantic effect on the value of the long double number)
can result in equal values being wrongly treated as unequal, and an
incorrect result being returned from fmodl.  This patch fixes this by
checking for the case of zero low parts.

Although this does show up in tests from libm-test.inc (both tests of
fmodl, and, indirectly, of remainderl / dreml), the dependence on
non-semantic zero low parts means that test shouldn't be expected to
reproduce it reliably; thus, this patch adds a standalone test that
sets up affected values using unions.

Tested for powerpc.

	[BZ #19602]
	* sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Handle
	equal high parts and both low parts zero specially.
	* sysdeps/ieee754/ldbl-128ibm/test-fmodl-ldbl-128ibm.c: New test.
	* sysdeps/ieee754/ldbl-128ibm/Makefile [$(subdir) = math] (tests):
	Add test-fmodl-ldbl-128ibm.
2016-02-18 22:54:07 +00:00

150 lines
4.6 KiB
C

/* e_fmodl.c -- long double version of e_fmod.c.
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_fmodl(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include <math.h>
#include <math_private.h>
#include <ieee754.h>
static const long double one = 1.0, Zero[] = {0.0, -0.0,};
long double
__ieee754_fmodl (long double x, long double y)
{
int64_t hx, hy, hz, sx, sy;
uint64_t lx, ly, lz;
int n, ix, iy;
double xhi, xlo, yhi, ylo;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS64 (hx, xhi);
EXTRACT_WORDS64 (lx, xlo);
ldbl_unpack (y, &yhi, &ylo);
EXTRACT_WORDS64 (hy, yhi);
EXTRACT_WORDS64 (ly, ylo);
sx = hx&0x8000000000000000ULL; /* sign of x */
hx ^= sx; /* |x| */
sy = hy&0x8000000000000000ULL; /* sign of y */
hy ^= sy; /* |y| */
/* purge off exception values */
if(__builtin_expect(hy==0 ||
(hx>=0x7ff0000000000000LL)|| /* y=0,or x not finite */
(hy>0x7ff0000000000000LL),0)) /* or y is NaN */
return (x*y)/(x*y);
if (__glibc_unlikely (hx <= hy))
{
/* If |x| < |y| return x. */
if (hx < hy)
return x;
/* At this point the absolute value of the high doubles of
x and y must be equal. */
if ((lx & 0x7fffffffffffffffLL) == 0
&& (ly & 0x7fffffffffffffffLL) == 0)
/* Both low parts are zero. The result should be an
appropriately signed zero, but the subsequent logic
could treat them as unequal, depending on the signs
of the low parts. */
return Zero[(uint64_t) sx >> 63];
/* If the low double of y is the same sign as the high
double of y (ie. the low double increases |y|)... */
if (((ly ^ sy) & 0x8000000000000000LL) == 0
/* ... then a different sign low double to high double
for x or same sign but lower magnitude... */
&& (int64_t) (lx ^ sx) < (int64_t) (ly ^ sy))
/* ... means |x| < |y|. */
return x;
/* If the low double of x differs in sign to the high
double of x (ie. the low double decreases |x|)... */
if (((lx ^ sx) & 0x8000000000000000LL) != 0
/* ... then a different sign low double to high double
for y with lower magnitude (we've already caught
the same sign for y case above)... */
&& (int64_t) (lx ^ sx) > (int64_t) (ly ^ sy))
/* ... means |x| < |y|. */
return x;
/* If |x| == |y| return x*0. */
if ((lx ^ sx) == (ly ^ sy))
return Zero[(uint64_t) sx >> 63];
}
/* Make the IBM extended format 105 bit mantissa look like the ieee854 112
bit mantissa so the following operations will give the correct
result. */
ldbl_extract_mantissa(&hx, &lx, &ix, x);
ldbl_extract_mantissa(&hy, &ly, &iy, y);
if (__glibc_unlikely (ix == -IEEE754_DOUBLE_BIAS))
{
/* subnormal x, shift x to normal. */
while ((hx & (1LL << 48)) == 0)
{
hx = (hx << 1) | (lx >> 63);
lx = lx << 1;
ix -= 1;
}
}
if (__glibc_unlikely (iy == -IEEE754_DOUBLE_BIAS))
{
/* subnormal y, shift y to normal. */
while ((hy & (1LL << 48)) == 0)
{
hy = (hy << 1) | (ly >> 63);
ly = ly << 1;
iy -= 1;
}
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;}
else {
if((hz|lz)==0) /* return sign(x)*0 */
return Zero[(u_int64_t)sx>>63];
hx = hz+hz+(lz>>63); lx = lz+lz;
}
}
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz>=0) {hx=hz;lx=lz;}
/* convert back to floating value and restore the sign */
if((hx|lx)==0) /* return sign(x)*0 */
return Zero[(u_int64_t)sx>>63];
while(hx<0x0001000000000000LL) { /* normalize x */
hx = hx+hx+(lx>>63); lx = lx+lx;
iy -= 1;
}
if(__builtin_expect(iy>= -1022,0)) { /* normalize output */
x = ldbl_insert_mantissa((sx>>63), iy, hx, lx);
} else { /* subnormal output */
n = -1022 - iy;
/* We know 1 <= N <= 52, and that there are no nonzero
bits in places below 2^-1074. */
lx = (lx >> n) | ((u_int64_t) hx << (64 - n));
hx >>= n;
x = ldbl_insert_mantissa((sx>>63), -1023, hx, lx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}
strong_alias (__ieee754_fmodl, __fmodl_finite)