glibc/sysdeps/ieee754/ldbl-128/s_asinhl.c
Paul E. Murphy 02bbfb414f ldbl-128: Use L(x) macro for long double constants
This runs the attached sed script against these files using
a regex which aggressively matches long double literals
when not obviously part of a comment.

Likewise, 5 digit or less integral constants are replaced
with integer constants, excepting the two cases of 0 used
in large tables, which are also the only integral values
of the form x.0*E0L encountered within these converted
files.

Likewise, -L(x) is transformed into L(-x).

Naturally, the script has a few minor hiccups which are
more clearly remedied via the attached fixup patch.  Such
hiccups include, context-sensitive promotion to a real
type, and munging constants inside harder to detect
comment blocks.
2016-09-13 15:33:59 -05:00

80 lines
2.0 KiB
C

/* s_asinhl.c -- long double version of s_asinh.c.
* Conversion to long double by Ulrich Drepper,
* Cygnus Support, drepper@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: $";
#endif
/* asinhl(x)
* Method :
* Based on
* asinhl(x) = signl(x) * logl [ |x| + sqrtl(x*x+1) ]
* we have
* asinhl(x) := x if 1+x*x=1,
* := signl(x)*(logl(x)+ln2)) for large |x|, else
* := signl(x)*logl(2|x|+1/(|x|+sqrtl(x*x+1))) if|x|>2, else
* := signl(x)*log1pl(|x| + x^2/(1 + sqrtl(1+x^2)))
*/
#include <float.h>
#include <math.h>
#include <math_private.h>
static const _Float128
one = 1,
ln2 = L(6.931471805599453094172321214581765681e-1),
huge = L(1.0e+4900);
_Float128
__asinhl (_Float128 x)
{
_Float128 t, w;
int32_t ix, sign;
ieee854_long_double_shape_type u;
u.value = x;
sign = u.parts32.w0;
ix = sign & 0x7fffffff;
if (ix == 0x7fff0000)
return x + x; /* x is inf or NaN */
if (ix < 0x3fc70000)
{ /* |x| < 2^ -56 */
math_check_force_underflow (x);
if (huge + x > one)
return x; /* return x inexact except 0 */
}
u.parts32.w0 = ix;
if (ix > 0x40350000)
{ /* |x| > 2 ^ 54 */
w = __ieee754_logl (u.value) + ln2;
}
else if (ix >0x40000000)
{ /* 2^ 54 > |x| > 2.0 */
t = u.value;
w = __ieee754_logl (2.0 * t + one / (__ieee754_sqrtl (x * x + one) + t));
}
else
{ /* 2.0 > |x| > 2 ^ -56 */
t = x * x;
w = __log1pl (u.value + t / (one + __ieee754_sqrtl (one + t)));
}
if (sign & 0x80000000)
return -w;
else
return w;
}
weak_alias (__asinhl, asinhl)