glibc/sysdeps/ieee754/ldbl-128/e_acosl.c
Paul E. Murphy 02bbfb414f ldbl-128: Use L(x) macro for long double constants
This runs the attached sed script against these files using
a regex which aggressively matches long double literals
when not obviously part of a comment.

Likewise, 5 digit or less integral constants are replaced
with integer constants, excepting the two cases of 0 used
in large tables, which are also the only integral values
of the form x.0*E0L encountered within these converted
files.

Likewise, -L(x) is transformed into L(-x).

Naturally, the script has a few minor hiccups which are
more clearly remedied via the attached fixup patch.  Such
hiccups include, context-sensitive promotion to a real
type, and munging constants inside harder to detect
comment blocks.
2016-09-13 15:33:59 -05:00

320 lines
9.8 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
Long double expansions are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* __ieee754_acosl(x)
* Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x| <= 0.375
* acos(x) = pi/2 - asin(x)
* Between .375 and .5 the approximation is
* acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x)
* Between .5 and .625 the approximation is
* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
* For x > 0.625,
* acos(x) = 2 asin(sqrt((1-x)/2))
* computed with an extended precision square root in the leading term.
* For x < -0.625
* acos(x) = pi - 2 asin(sqrt((1-|x|)/2))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
* Functions needed: __ieee754_sqrtl.
*/
#include <math.h>
#include <math_private.h>
static const _Float128
one = 1,
pio2_hi = L(1.5707963267948966192313216916397514420986),
pio2_lo = L(4.3359050650618905123985220130216759843812E-35),
/* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
-0.0625 <= x <= 0.0625
peak relative error 3.3e-35 */
rS0 = L(5.619049346208901520945464704848780243887E0),
rS1 = L(-4.460504162777731472539175700169871920352E1),
rS2 = L(1.317669505315409261479577040530751477488E2),
rS3 = L(-1.626532582423661989632442410808596009227E2),
rS4 = L(3.144806644195158614904369445440583873264E1),
rS5 = L(9.806674443470740708765165604769099559553E1),
rS6 = L(-5.708468492052010816555762842394927806920E1),
rS7 = L(-1.396540499232262112248553357962639431922E1),
rS8 = L(1.126243289311910363001762058295832610344E1),
rS9 = L(4.956179821329901954211277873774472383512E-1),
rS10 = L(-3.313227657082367169241333738391762525780E-1),
sS0 = L(-4.645814742084009935700221277307007679325E0),
sS1 = L(3.879074822457694323970438316317961918430E1),
sS2 = L(-1.221986588013474694623973554726201001066E2),
sS3 = L(1.658821150347718105012079876756201905822E2),
sS4 = L(-4.804379630977558197953176474426239748977E1),
sS5 = L(-1.004296417397316948114344573811562952793E2),
sS6 = L(7.530281592861320234941101403870010111138E1),
sS7 = L(1.270735595411673647119592092304357226607E1),
sS8 = L(-1.815144839646376500705105967064792930282E1),
sS9 = L(-7.821597334910963922204235247786840828217E-2),
/* 1.000000000000000000000000000000000000000E0 */
acosr5625 = L(9.7338991014954640492751132535550279812151E-1),
pimacosr5625 = L(2.1682027434402468335351320579240000860757E0),
/* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x)
-0.0625 <= x <= 0.0625
peak relative error 2.1e-35 */
P0 = L(2.177690192235413635229046633751390484892E0),
P1 = L(-2.848698225706605746657192566166142909573E1),
P2 = L(1.040076477655245590871244795403659880304E2),
P3 = L(-1.400087608918906358323551402881238180553E2),
P4 = L(2.221047917671449176051896400503615543757E1),
P5 = L(9.643714856395587663736110523917499638702E1),
P6 = L(-5.158406639829833829027457284942389079196E1),
P7 = L(-1.578651828337585944715290382181219741813E1),
P8 = L(1.093632715903802870546857764647931045906E1),
P9 = L(5.448925479898460003048760932274085300103E-1),
P10 = L(-3.315886001095605268470690485170092986337E-1),
Q0 = L(-1.958219113487162405143608843774587557016E0),
Q1 = L(2.614577866876185080678907676023269360520E1),
Q2 = L(-9.990858606464150981009763389881793660938E1),
Q3 = L(1.443958741356995763628660823395334281596E2),
Q4 = L(-3.206441012484232867657763518369723873129E1),
Q5 = L(-1.048560885341833443564920145642588991492E2),
Q6 = L(6.745883931909770880159915641984874746358E1),
Q7 = L(1.806809656342804436118449982647641392951E1),
Q8 = L(-1.770150690652438294290020775359580915464E1),
Q9 = L(-5.659156469628629327045433069052560211164E-1),
/* 1.000000000000000000000000000000000000000E0 */
acosr4375 = L(1.1179797320499710475919903296900511518755E0),
pimacosr4375 = L(2.0236129215398221908706530535894517323217E0),
/* asin(x) = x + x^3 pS(x^2) / qS(x^2)
0 <= x <= 0.5
peak relative error 1.9e-35 */
pS0 = L(-8.358099012470680544198472400254596543711E2),
pS1 = L(3.674973957689619490312782828051860366493E3),
pS2 = L(-6.730729094812979665807581609853656623219E3),
pS3 = L(6.643843795209060298375552684423454077633E3),
pS4 = L(-3.817341990928606692235481812252049415993E3),
pS5 = L(1.284635388402653715636722822195716476156E3),
pS6 = L(-2.410736125231549204856567737329112037867E2),
pS7 = L(2.219191969382402856557594215833622156220E1),
pS8 = L(-7.249056260830627156600112195061001036533E-1),
pS9 = L(1.055923570937755300061509030361395604448E-3),
qS0 = L(-5.014859407482408326519083440151745519205E3),
qS1 = L(2.430653047950480068881028451580393430537E4),
qS2 = L(-4.997904737193653607449250593976069726962E4),
qS3 = L(5.675712336110456923807959930107347511086E4),
qS4 = L(-3.881523118339661268482937768522572588022E4),
qS5 = L(1.634202194895541569749717032234510811216E4),
qS6 = L(-4.151452662440709301601820849901296953752E3),
qS7 = L(5.956050864057192019085175976175695342168E2),
qS8 = L(-4.175375777334867025769346564600396877176E1);
/* 1.000000000000000000000000000000000000000E0 */
_Float128
__ieee754_acosl (_Float128 x)
{
_Float128 z, r, w, p, q, s, t, f2;
int32_t ix, sign;
ieee854_long_double_shape_type u;
u.value = x;
sign = u.parts32.w0;
ix = sign & 0x7fffffff;
u.parts32.w0 = ix; /* |x| */
if (ix >= 0x3fff0000) /* |x| >= 1 */
{
if (ix == 0x3fff0000
&& (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
{ /* |x| == 1 */
if ((sign & 0x80000000) == 0)
return 0.0; /* acos(1) = 0 */
else
return (2.0 * pio2_hi) + (2.0 * pio2_lo); /* acos(-1)= pi */
}
return (x - x) / (x - x); /* acos(|x| > 1) is NaN */
}
else if (ix < 0x3ffe0000) /* |x| < 0.5 */
{
if (ix < 0x3f8e0000) /* |x| < 2**-113 */
return pio2_hi + pio2_lo;
if (ix < 0x3ffde000) /* |x| < .4375 */
{
/* Arcsine of x. */
z = x * x;
p = (((((((((pS9 * z
+ pS8) * z
+ pS7) * z
+ pS6) * z
+ pS5) * z
+ pS4) * z
+ pS3) * z
+ pS2) * z
+ pS1) * z
+ pS0) * z;
q = (((((((( z
+ qS8) * z
+ qS7) * z
+ qS6) * z
+ qS5) * z
+ qS4) * z
+ qS3) * z
+ qS2) * z
+ qS1) * z
+ qS0;
r = x + x * p / q;
z = pio2_hi - (r - pio2_lo);
return z;
}
/* .4375 <= |x| < .5 */
t = u.value - L(0.4375);
p = ((((((((((P10 * t
+ P9) * t
+ P8) * t
+ P7) * t
+ P6) * t
+ P5) * t
+ P4) * t
+ P3) * t
+ P2) * t
+ P1) * t
+ P0) * t;
q = (((((((((t
+ Q9) * t
+ Q8) * t
+ Q7) * t
+ Q6) * t
+ Q5) * t
+ Q4) * t
+ Q3) * t
+ Q2) * t
+ Q1) * t
+ Q0;
r = p / q;
if (sign & 0x80000000)
r = pimacosr4375 - r;
else
r = acosr4375 + r;
return r;
}
else if (ix < 0x3ffe4000) /* |x| < 0.625 */
{
t = u.value - L(0.5625);
p = ((((((((((rS10 * t
+ rS9) * t
+ rS8) * t
+ rS7) * t
+ rS6) * t
+ rS5) * t
+ rS4) * t
+ rS3) * t
+ rS2) * t
+ rS1) * t
+ rS0) * t;
q = (((((((((t
+ sS9) * t
+ sS8) * t
+ sS7) * t
+ sS6) * t
+ sS5) * t
+ sS4) * t
+ sS3) * t
+ sS2) * t
+ sS1) * t
+ sS0;
if (sign & 0x80000000)
r = pimacosr5625 - p / q;
else
r = acosr5625 + p / q;
return r;
}
else
{ /* |x| >= .625 */
z = (one - u.value) * 0.5;
s = __ieee754_sqrtl (z);
/* Compute an extended precision square root from
the Newton iteration s -> 0.5 * (s + z / s).
The change w from s to the improved value is
w = 0.5 * (s + z / s) - s = (s^2 + z)/2s - s = (z - s^2)/2s.
Express s = f1 + f2 where f1 * f1 is exactly representable.
w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s .
s + w has extended precision. */
u.value = s;
u.parts32.w2 = 0;
u.parts32.w3 = 0;
f2 = s - u.value;
w = z - u.value * u.value;
w = w - 2.0 * u.value * f2;
w = w - f2 * f2;
w = w / (2.0 * s);
/* Arcsine of s. */
p = (((((((((pS9 * z
+ pS8) * z
+ pS7) * z
+ pS6) * z
+ pS5) * z
+ pS4) * z
+ pS3) * z
+ pS2) * z
+ pS1) * z
+ pS0) * z;
q = (((((((( z
+ qS8) * z
+ qS7) * z
+ qS6) * z
+ qS5) * z
+ qS4) * z
+ qS3) * z
+ qS2) * z
+ qS1) * z
+ qS0;
r = s + (w + s * p / q);
if (sign & 0x80000000)
w = pio2_hi + (pio2_lo - r);
else
w = r;
return 2.0 * w;
}
}
strong_alias (__ieee754_acosl, __acosl_finite)