glibc/sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c

220 lines
6.2 KiB
C

/* Implementation of gamma function according to ISO C.
Copyright (C) 1997-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <fenv_private.h>
#include <math-underflow.h>
#include <float.h>
#include <libm-alias-finite.h>
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
approximation to gamma function. */
static const long double gamma_coeff[] =
{
0x1.555555555555555555555555558p-4L,
-0xb.60b60b60b60b60b60b60b60b6p-12L,
0x3.4034034034034034034034034p-12L,
-0x2.7027027027027027027027027p-12L,
0x3.72a3c5631fe46ae1d4e700dca9p-12L,
-0x7.daac36664f1f207daac36664f2p-12L,
0x1.a41a41a41a41a41a41a41a41a4p-8L,
-0x7.90a1b2c3d4e5f708192a3b4c5ep-8L,
0x2.dfd2c703c0cfff430edfd2c704p-4L,
-0x1.6476701181f39edbdb9ce625988p+0L,
0xd.672219167002d3a7a9c886459cp+0L,
-0x9.cd9292e6660d55b3f712eb9e08p+4L,
0x8.911a740da740da740da740da74p+8L,
};
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
/* Return gamma (X), for positive X less than 191, in the form R *
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
avoid overflow or underflow in intermediate calculations. */
static long double
gammal_positive (long double x, int *exp2_adj)
{
int local_signgam;
if (x < 0.5L)
{
*exp2_adj = 0;
return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
}
else if (x <= 1.5L)
{
*exp2_adj = 0;
return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
}
else if (x < 11.5L)
{
/* Adjust into the range for using exp (lgamma). */
*exp2_adj = 0;
long double n = ceill (x - 1.5L);
long double x_adj = x - n;
long double eps;
long double prod = __gamma_productl (x_adj, 0, n, &eps);
return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
* prod * (1.0L + eps));
}
else
{
long double eps = 0;
long double x_eps = 0;
long double x_adj = x;
long double prod = 1;
if (x < 23.0L)
{
/* Adjust into the range for applying Stirling's
approximation. */
long double n = ceill (23.0L - x);
x_adj = x + n;
x_eps = (x - (x_adj - n));
prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
}
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
factored out. */
long double exp_adj = -eps;
long double x_adj_int = roundl (x_adj);
long double x_adj_frac = x_adj - x_adj_int;
int x_adj_log2;
long double x_adj_mant = __frexpl (x_adj, &x_adj_log2);
if (x_adj_mant < M_SQRT1_2l)
{
x_adj_log2--;
x_adj_mant *= 2.0L;
}
*exp2_adj = x_adj_log2 * (int) x_adj_int;
long double ret = (__ieee754_powl (x_adj_mant, x_adj)
* __ieee754_exp2l (x_adj_log2 * x_adj_frac)
* __ieee754_expl (-x_adj)
* sqrtl (2 * M_PIl / x_adj)
/ prod);
exp_adj += x_eps * __ieee754_logl (x_adj);
long double bsum = gamma_coeff[NCOEFF - 1];
long double x_adj2 = x_adj * x_adj;
for (size_t i = 1; i <= NCOEFF - 1; i++)
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
exp_adj += bsum / x_adj;
return ret + ret * __expm1l (exp_adj);
}
}
long double
__ieee754_gammal_r (long double x, int *signgamp)
{
int64_t hx;
double xhi;
long double ret;
xhi = ldbl_high (x);
EXTRACT_WORDS64 (hx, xhi);
if ((hx & 0x7fffffffffffffffLL) == 0)
{
/* Return value for x == 0 is Inf with divide by zero exception. */
*signgamp = 0;
return 1.0 / x;
}
if (hx < 0 && (uint64_t) hx < 0xfff0000000000000ULL && rintl (x) == x)
{
/* Return value for integer x < 0 is NaN with invalid exception. */
*signgamp = 0;
return (x - x) / (x - x);
}
if (hx == 0xfff0000000000000ULL)
{
/* x == -Inf. According to ISO this is NaN. */
*signgamp = 0;
return x - x;
}
if ((hx & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL)
{
/* Positive infinity (return positive infinity) or NaN (return
NaN). */
*signgamp = 0;
return x + x;
}
if (x >= 172.0L)
{
/* Overflow. */
*signgamp = 0;
return LDBL_MAX * LDBL_MAX;
}
else
{
SET_RESTORE_ROUNDL (FE_TONEAREST);
if (x > 0.0L)
{
*signgamp = 0;
int exp2_adj;
ret = gammal_positive (x, &exp2_adj);
ret = __scalbnl (ret, exp2_adj);
}
else if (x >= -0x1p-110L)
{
*signgamp = 0;
ret = 1.0L / x;
}
else
{
long double tx = truncl (x);
*signgamp = (tx == 2.0L * truncl (tx / 2.0L)) ? -1 : 1;
if (x <= -191.0L)
/* Underflow. */
ret = LDBL_MIN * LDBL_MIN;
else
{
long double frac = tx - x;
if (frac > 0.5L)
frac = 1.0L - frac;
long double sinpix = (frac <= 0.25L
? __sinl (M_PIl * frac)
: __cosl (M_PIl * (0.5L - frac)));
int exp2_adj;
ret = M_PIl / (-x * sinpix
* gammal_positive (-x, &exp2_adj));
ret = __scalbnl (ret, -exp2_adj);
math_check_force_underflow_nonneg (ret);
}
}
}
if (isinf (ret) && x != 0)
{
if (*signgamp < 0)
return -(-copysignl (LDBL_MAX, ret) * LDBL_MAX);
else
return copysignl (LDBL_MAX, ret) * LDBL_MAX;
}
else if (ret == 0)
{
if (*signgamp < 0)
return -(-copysignl (LDBL_MIN, ret) * LDBL_MIN);
else
return copysignl (LDBL_MIN, ret) * LDBL_MIN;
}
else
return ret;
}
libm_alias_finite (__ieee754_gammal_r, __gammal_r)