glibc/math/test-tgmath.c
Joseph Myers 7ec903e028 Implement C23 exp2m1, exp10m1
C23 adds various <math.h> function families originally defined in TS
18661-4.  Add the exp2m1 and exp10m1 functions (exp2(x)-1 and
exp10(x)-1, like expm1).

As with other such functions, these use type-generic templates that
could be replaced with faster and more accurate type-specific
implementations in future.  Test inputs are copied from those for
expm1, plus some additions close to the overflow threshold (copied
from exp2 and exp10) and also some near the underflow threshold.

exp2m1 has the unusual property of having an input (M_MAX_EXP) where
whether the function overflows (under IEEE semantics) depends on the
rounding mode.  Although these could reasonably be XFAILed in the
testsuite (as we do in some cases for arguments very close to a
function's overflow threshold when an error of a few ulps in the
implementation can result in the implementation not agreeing with an
ideal one on whether overflow takes place - the testsuite isn't smart
enough to handle this automatically), since these functions aren't
required to be correctly rounding, I made the implementation check for
and handle this case specially.

The Makefile ordering expected by lint-makefiles for the new functions
is a bit peculiar, but I implemented it in this patch so that the test
passes; I don't know why log2 also needed moving in one Makefile
variable setting when it didn't in my previous patches, but the
failure showed a different place was expected for that function as
well.

The powerpc64le IFUNC setup seems not to be as self-contained as one
might hope; it shouldn't be necessary to add IFUNCs for new functions
such as these simply to get them building, but without setting up
IFUNCs for the new functions, there were undefined references to
__GI___expm1f128 (that IFUNC machinery results in no such function
being defined, but doesn't stop include/math.h from doing the
redirection resulting in the exp2m1f128 and exp10m1f128
implementations expecting to call it).

Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17 16:31:49 +00:00

1276 lines
19 KiB
C

/* Test compilation of tgmath macros.
Copyright (C) 2001-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef HAVE_MAIN
#include <float.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <tgmath.h>
//#define DEBUG
static void compile_test (void);
static void compile_testf (void);
#if LDBL_MANT_DIG > DBL_MANT_DIG
static void compile_testl (void);
#endif
float fx;
double dx;
long double lx;
const float fy = 1.25;
const double dy = 1.25;
const long double ly = 1.25;
complex float fz;
complex double dz;
complex long double lz;
volatile int count_double;
volatile int count_float;
volatile int count_ldouble;
volatile int count_cdouble;
volatile int count_cfloat;
volatile int count_cldouble;
#define NCALLS 168
#define NCALLS_INT 4
#define NCCALLS 47
static int
do_test (void)
{
int result = 0;
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_test ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for double test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for double test");
result = 1;
}
if (count_double < NCALLS + NCALLS_INT)
{
printf ("double functions not called often enough (%d)\n",
count_double);
result = 1;
}
else if (count_double > NCALLS + NCALLS_INT)
{
printf ("double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cdouble < NCCALLS)
{
printf ("double complex functions not called often enough (%d)\n",
count_cdouble);
result = 1;
}
else if (count_cdouble > NCCALLS)
{
printf ("double complex functions called too often (%d)\n",
count_cdouble);
result = 1;
}
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testf ();
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for float test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for float test");
result = 1;
}
if (count_float < NCALLS)
{
printf ("float functions not called often enough (%d)\n", count_float);
result = 1;
}
else if (count_float > NCALLS)
{
printf ("float functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cfloat < NCCALLS)
{
printf ("float complex functions not called often enough (%d)\n",
count_cfloat);
result = 1;
}
else if (count_cfloat > NCCALLS)
{
printf ("float complex functions called too often (%d)\n",
count_cfloat);
result = 1;
}
#if LDBL_MANT_DIG > DBL_MANT_DIG
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testl ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for long double test");
result = 1;
}
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for long double test");
result = 1;
}
if (count_ldouble < NCALLS)
{
printf ("long double functions not called often enough (%d)\n",
count_ldouble);
result = 1;
}
else if (count_ldouble > NCALLS)
{
printf ("long double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cldouble < NCCALLS)
{
printf ("long double complex functions not called often enough (%d)\n",
count_cldouble);
result = 1;
}
else if (count_cldouble > NCCALLS)
{
printf ("long double complex functions called too often (%d)\n",
count_cldouble);
result = 1;
}
#endif
return result;
}
/* Now generate the three functions. */
#define HAVE_MAIN
#define F(name) name
#define TYPE double
#define TEST_INT 1
#define x dx
#define y dy
#define z dz
#define count count_double
#define ccount count_cdouble
#include "test-tgmath.c"
#define F(name) name##f
#define TYPE float
#define x fx
#define y fy
#define z fz
#define count count_float
#define ccount count_cfloat
#include "test-tgmath.c"
#if LDBL_MANT_DIG > DBL_MANT_DIG
#define F(name) name##l
#define TYPE long double
#define x lx
#define y ly
#define z lz
#define count count_ldouble
#define ccount count_cldouble
#include "test-tgmath.c"
#endif
#define TEST_FUNCTION do_test ()
#include "../test-skeleton.c"
#else
#ifdef DEBUG
#define P() puts (__FUNCTION__)
#else
#define P()
#endif
static void
F(compile_test) (void)
{
TYPE a, b, c = 1.0;
complex TYPE d;
int i = 2;
int saved_count;
long int j;
long long int k;
intmax_t m;
uintmax_t um;
a = cos (cos (x));
b = acos (acos (a));
a = sin (sin (x));
b = asin (asin (a));
a = tan (tan (x));
b = atan (atan (a));
c = atan2 (atan2 (a, c), atan2 (b, x));
a = cosh (cosh (x));
b = acosh (acosh (a));
a = sinh (sinh (x));
b = asinh (asinh (a));
a = tanh (tanh (x));
b = atanh (atanh (a));
a = exp (exp (x));
b = log (log (a));
a = log10 (log10 (x));
b = ldexp (ldexp (a, 1), 5);
a = frexp (frexp (x, &i), &i);
b = expm1 (expm1 (a));
a = exp2m1 (exp2m1 (b));
b = exp10m1 (exp10m1 (a));
a = log1p (log1p (x));
b = logb (logb (a));
a = exp2 (exp2 (x));
a = exp10 (exp10 (x));
b = log2 (log2 (a));
a = log2p1 (log2p1 (x));
a = log10p1 (log10p1 (x));
a = logp1 (logp1 (x));
a = pow (pow (x, a), pow (c, b));
b = sqrt (sqrt (a));
a = hypot (hypot (x, b), hypot (c, a));
b = cbrt (cbrt (a));
a = ceil (ceil (x));
b = fabs (fabs (a));
a = floor (floor (x));
b = fmod (fmod (a, b), fmod (c, x));
a = nearbyint (nearbyint (x));
b = round (round (a));
c = roundeven (roundeven (a));
a = trunc (trunc (x));
b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
j = lrint (x) + lround (a);
k = llrint (b) + llround (c);
m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
a = erf (erf (x));
b = erfc (erfc (a));
a = tgamma (tgamma (x));
b = lgamma (lgamma (a));
a = rint (rint (x));
b = nextafter (nextafter (a, b), nextafter (c, x));
a = nextdown (nextdown (a));
b = nexttoward (nexttoward (x, a), c);
a = nextup (nextup (a));
b = remainder (remainder (a, b), remainder (c, x));
a = scalb (scalb (x, a), (TYPE) (6));
k = scalbn (a, 7) + scalbln (c, 10l);
i = ilogb (x);
j = llogb (x);
a = fdim (fdim (x, a), fdim (c, b));
b = fmax (fmax (a, x), fmax (c, b));
a = fmin (fmin (x, a), fmin (c, b));
b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
a = fminmag (fminmag (x, a), fminmag (c, b));
b = fmaximum (fmaximum (a, x), fmaximum (c, b));
a = fminimum (fminimum (x, a), fminimum (c, b));
b = fmaximum_num (fmaximum_num (a, x), fmaximum_num (c, b));
a = fminimum_num (fminimum_num (x, a), fminimum_num (c, b));
b = fmaximum_mag (fmaximum_mag (a, x), fmaximum_mag (c, b));
a = fminimum_mag (fminimum_mag (x, a), fminimum_mag (c, b));
b = fmaximum_mag_num (fmaximum_mag_num (a, x), fmaximum_mag_num (c, b));
a = fminimum_mag_num (fminimum_mag_num (x, a), fminimum_mag_num (c, b));
b = fma (sin (a), sin (x), sin (c));
#ifdef TEST_INT
a = atan2 (i, b);
b = remquo (i, a, &i);
c = fma (i, b, i);
a = pow (i, c);
#endif
x = a + b + c + i + j + k + m + um;
saved_count = count;
if (ccount != 0)
ccount = -10000;
d = cos (cos (z));
z = acos (acos (d));
d = sin (sin (z));
z = asin (asin (d));
d = tan (tan (z));
z = atan (atan (d));
d = cosh (cosh (z));
z = acosh (acosh (d));
d = sinh (sinh (z));
z = asinh (asinh (d));
d = tanh (tanh (z));
z = atanh (atanh (d));
d = exp (exp (z));
z = log (log (d));
d = sqrt (sqrt (z));
z = conj (conj (d));
d = fabs (conj (a));
z = pow (pow (a, d), pow (b, z));
d = cproj (cproj (z));
z += fabs (cproj (a));
a = carg (carg (z));
b = creal (creal (d));
c = cimag (cimag (z));
x += a + b + c + i + j + k;
z += d;
if (saved_count != count)
count = -10000;
if (0)
{
a = cos (y);
a = acos (y);
a = sin (y);
a = asin (y);
a = tan (y);
a = atan (y);
a = atan2 (y, y);
a = cosh (y);
a = acosh (y);
a = sinh (y);
a = asinh (y);
a = tanh (y);
a = atanh (y);
a = exp (y);
a = log (y);
a = log10 (y);
a = ldexp (y, 5);
a = frexp (y, &i);
a = expm1 (y);
a = exp2m1 (y);
a = exp10m1 (y);
a = log1p (y);
a = logb (y);
a = exp2 (y);
a = exp10 (y);
a = log2 (y);
a = log2p1 (y);
a = log10p1 (y);
a = logp1 (y);
a = pow (y, y);
a = sqrt (y);
a = hypot (y, y);
a = cbrt (y);
a = ceil (y);
a = fabs (y);
a = floor (y);
a = fmod (y, y);
a = nearbyint (y);
a = round (y);
a = roundeven (y);
a = trunc (y);
a = remquo (y, y, &i);
j = lrint (y) + lround (y);
k = llrint (y) + llround (y);
m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
um = (ufromfp (y, FP_INT_TONEAREST, 8)
+ ufromfpx (y, FP_INT_TOWARDZERO, 9));
a = erf (y);
a = erfc (y);
a = tgamma (y);
a = lgamma (y);
a = rint (y);
a = nextafter (y, y);
a = nexttoward (y, y);
a = remainder (y, y);
a = scalb (y, (const TYPE) (6));
k = scalbn (y, 7) + scalbln (y, 10l);
i = ilogb (y);
j = llogb (y);
a = fdim (y, y);
a = fmax (y, y);
a = fmin (y, y);
a = fmaxmag (y, y);
a = fminmag (y, y);
a = fmaximum (y, y);
a = fminimum (y, y);
a = fmaximum_num (y, y);
a = fminimum_num (y, y);
a = fmaximum_mag (y, y);
a = fminimum_mag (y, y);
a = fmaximum_mag_num (y, y);
a = fminimum_mag_num (y, y);
a = fma (y, y, y);
#ifdef TEST_INT
a = atan2 (i, y);
a = remquo (i, y, &i);
a = fma (i, y, i);
a = pow (i, y);
#endif
d = cos ((const complex TYPE) z);
d = acos ((const complex TYPE) z);
d = sin ((const complex TYPE) z);
d = asin ((const complex TYPE) z);
d = tan ((const complex TYPE) z);
d = atan ((const complex TYPE) z);
d = cosh ((const complex TYPE) z);
d = acosh ((const complex TYPE) z);
d = sinh ((const complex TYPE) z);
d = asinh ((const complex TYPE) z);
d = tanh ((const complex TYPE) z);
d = atanh ((const complex TYPE) z);
d = exp ((const complex TYPE) z);
d = log ((const complex TYPE) z);
d = sqrt ((const complex TYPE) z);
d = pow ((const complex TYPE) z, (const complex TYPE) z);
d = fabs ((const complex TYPE) z);
d = carg ((const complex TYPE) z);
d = creal ((const complex TYPE) z);
d = cimag ((const complex TYPE) z);
d = conj ((const complex TYPE) z);
d = cproj ((const complex TYPE) z);
}
}
#undef x
#undef y
#undef z
TYPE
(F(cos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan2)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log10)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ldexp)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(frexp)) (TYPE x, int *y)
{
++count;
P ();
return x + *y;
}
TYPE
(F(expm1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp2m1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp10m1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log1p)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(logb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp10)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log2p1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log10p1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(logp1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(pow)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(sqrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(hypot)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cbrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ceil)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fabs)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(floor)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fmod)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nearbyint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(round)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(roundeven)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(trunc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remquo)) (TYPE x, TYPE y, int *i)
{
++count;
P ();
return x + y + *i;
}
long int
(F(lrint)) (TYPE x)
{
++count;
P ();
return x;
}
long int
(F(lround)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llrint)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llround)) (TYPE x)
{
++count;
P ();
return x;
}
intmax_t
(F(fromfp)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
intmax_t
(F(fromfpx)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
uintmax_t
(F(ufromfp)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
uintmax_t
(F(ufromfpx)) (TYPE x, int round, unsigned int width)
{
++count;
P ();
return x;
}
TYPE
(F(erf)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(erfc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(lgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(rint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nextafter)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextdown)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nexttoward)) (TYPE x, long double y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextup)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remainder)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalb)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbn)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbln)) (TYPE x, long int y)
{
++count;
P ();
return x + y;
}
int
(F(ilogb)) (TYPE x)
{
++count;
P ();
return x;
}
long int
(F(llogb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fdim)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmin)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmax)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminmag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaxmag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum_mag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum_mag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminimum_mag_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaximum_mag_num)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fma)) (TYPE x, TYPE y, TYPE z)
{
++count;
P ();
return x + y + z;
}
complex TYPE
(F(cacos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cacosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cexp)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(clog)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csqrt)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cpow)) (complex TYPE x, complex TYPE y)
{
++ccount;
P ();
return x + y;
}
TYPE
(F(cabs)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(carg)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(creal)) (complex TYPE x)
{
++ccount;
P ();
return __real__ x;
}
TYPE
(F(cimag)) (complex TYPE x)
{
++ccount;
P ();
return __imag__ x;
}
complex TYPE
(F(conj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cproj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
#undef F
#undef TYPE
#undef count
#undef ccount
#undef TEST_INT
#endif