glibc/sysdeps/ieee754/dbl-64/ulog.h
2013-01-16 16:06:48 +05:30

188 lines
9.9 KiB
C

/*
* IBM Accurate Mathematical Library
* Written by International Business Machines Corp.
* Copyright (C) 2001-2013 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/******************************************************************/
/* */
/* MODULE_NAME:ulog.h */
/* */
/* common data and variables prototype and definition */
/******************************************************************/
#ifndef ULOG_H
#define ULOG_H
#ifdef BIG_ENDI
static const number
/* polynomial I */
/**/ a2 = {{0xbfe00000, 0x0001aa8f} }, /* -0.500... */
/**/ a3 = {{0x3fd55555, 0x55588d2e} }, /* 0.333... */
/* polynomial II */
/**/ b0 = {{0x3fd55555, 0x55555555} }, /* 0.333... */
/**/ b1 = {{0xbfcfffff, 0xffffffbb} }, /* -0.249... */
/**/ b2 = {{0x3fc99999, 0x9999992f} }, /* 0.199... */
/**/ b3 = {{0xbfc55555, 0x556503fd} }, /* -0.166... */
/**/ b4 = {{0x3fc24924, 0x925b3d62} }, /* 0.142... */
/**/ b5 = {{0xbfbffffe, 0x160472fc} }, /* -0.124... */
/**/ b6 = {{0x3fbc71c5, 0x25db58ac} }, /* 0.111... */
/**/ b7 = {{0xbfb9a4ac, 0x11a2a61c} }, /* -0.100... */
/**/ b8 = {{0x3fb75077, 0x0df2b591} }, /* 0.091... */
/* polynomial III */
#if 0
/**/ c1 = {{0x3ff00000, 0x00000000} }, /* 1 */
#endif
/**/ c2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */
/**/ c3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */
/**/ c4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */
/**/ c5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
/* polynomial IV */
/**/ d2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */
/**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */
/**/ d3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */
/**/ dd3 = {{0x3c755555, 0x55555555} }, /* 1/3-d3 */
/**/ d4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */
/**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */
/**/ d5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
/**/ dd5 = {{0xbc699999, 0x9999999a} }, /* 1/5-d5 */
/**/ d6 = {{0xbfc55555, 0x55555555} }, /* -1/6 */
/**/ dd6 = {{0xbc655555, 0x55555555} }, /* -1/6-d6 */
/**/ d7 = {{0x3fc24924, 0x92492492} }, /* 1/7 */
/**/ dd7 = {{0x3c624924, 0x92492492} }, /* 1/7-d7 */
/**/ d8 = {{0xbfc00000, 0x00000000} }, /* -1/8 */
/**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */
/**/ d9 = {{0x3fbc71c7, 0x1c71c71c} }, /* 1/9 */
/**/ dd9 = {{0x3c5c71c7, 0x1c71c71c} }, /* 1/9-d9 */
/**/ d10 = {{0xbfb99999, 0x9999999a} }, /* -1/10 */
/**/ dd10 = {{0x3c599999, 0x9999999a} }, /* -1/10-d10 */
/**/ d11 = {{0x3fb745d1, 0x745d1746} }, /* 1/11 */
/**/ d12 = {{0xbfb55555, 0x55555555} }, /* -1/12 */
/**/ d13 = {{0x3fb3b13b, 0x13b13b14} }, /* 1/13 */
/**/ d14 = {{0xbfb24924, 0x92492492} }, /* -1/14 */
/**/ d15 = {{0x3fb11111, 0x11111111} }, /* 1/15 */
/**/ d16 = {{0xbfb00000, 0x00000000} }, /* -1/16 */
/**/ d17 = {{0x3fae1e1e, 0x1e1e1e1e} }, /* 1/17 */
/**/ d18 = {{0xbfac71c7, 0x1c71c71c} }, /* -1/18 */
/**/ d19 = {{0x3faaf286, 0xbca1af28} }, /* 1/19 */
/**/ d20 = {{0xbfa99999, 0x9999999a} }, /* -1/20 */
/* constants */
/**/ sqrt_2 = {{0x3ff6a09e, 0x667f3bcc} }, /* sqrt(2) */
/**/ h1 = {{0x3fd2e000, 0x00000000} }, /* 151/2**9 */
/**/ h2 = {{0x3f669000, 0x00000000} }, /* 361/2**17 */
/**/ delu = {{0x3f700000, 0x00000000} }, /* 1/2**8 */
/**/ delv = {{0x3ef00000, 0x00000000} }, /* 1/2**16 */
/**/ ln2a = {{0x3fe62e42, 0xfefa3800} }, /* ln(2) 43 bits */
/**/ ln2b = {{0x3d2ef357, 0x93c76730} }, /* ln(2)-ln2a */
/**/ e1 = {{0x3bbcc868, 0x00000000} }, /* 6.095e-21 */
/**/ e2 = {{0x3c1138ce, 0x00000000} }, /* 2.334e-19 */
/**/ e3 = {{0x3aa1565d, 0x00000000} }, /* 2.801e-26 */
/**/ e4 = {{0x39809d88, 0x00000000} }, /* 1.024e-31 */
/**/ e[M] ={{{0x37da223a, 0x00000000} }, /* 1.2e-39 */
/**/ {{0x35c851c4, 0x00000000} }, /* 1.3e-49 */
/**/ {{0x2ab85e51, 0x00000000} }, /* 6.8e-103 */
/**/ {{0x17383827, 0x00000000} }},/* 8.1e-197 */
/**/ two54 = {{0x43500000, 0x00000000} }, /* 2**54 */
/**/ u03 = {{0x3f9eb851, 0xeb851eb8} }; /* 0.03 */
#else
#ifdef LITTLE_ENDI
static const number
/* polynomial I */
/**/ a2 = {{0x0001aa8f, 0xbfe00000} }, /* -0.500... */
/**/ a3 = {{0x55588d2e, 0x3fd55555} }, /* 0.333... */
/* polynomial II */
/**/ b0 = {{0x55555555, 0x3fd55555} }, /* 0.333... */
/**/ b1 = {{0xffffffbb, 0xbfcfffff} }, /* -0.249... */
/**/ b2 = {{0x9999992f, 0x3fc99999} }, /* 0.199... */
/**/ b3 = {{0x556503fd, 0xbfc55555} }, /* -0.166... */
/**/ b4 = {{0x925b3d62, 0x3fc24924} }, /* 0.142... */
/**/ b5 = {{0x160472fc, 0xbfbffffe} }, /* -0.124... */
/**/ b6 = {{0x25db58ac, 0x3fbc71c5} }, /* 0.111... */
/**/ b7 = {{0x11a2a61c, 0xbfb9a4ac} }, /* -0.100... */
/**/ b8 = {{0x0df2b591, 0x3fb75077} }, /* 0.091... */
/* polynomial III */
#if 0
/**/ c1 = {{0x00000000, 0x3ff00000} }, /* 1 */
#endif
/**/ c2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */
/**/ c3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */
/**/ c4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */
/**/ c5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
/* polynomial IV */
/**/ d2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */
/**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */
/**/ d3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */
/**/ dd3 = {{0x55555555, 0x3c755555} }, /* 1/3-d3 */
/**/ d4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */
/**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */
/**/ d5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
/**/ dd5 = {{0x9999999a, 0xbc699999} }, /* 1/5-d5 */
/**/ d6 = {{0x55555555, 0xbfc55555} }, /* -1/6 */
/**/ dd6 = {{0x55555555, 0xbc655555} }, /* -1/6-d6 */
/**/ d7 = {{0x92492492, 0x3fc24924} }, /* 1/7 */
/**/ dd7 = {{0x92492492, 0x3c624924} }, /* 1/7-d7 */
/**/ d8 = {{0x00000000, 0xbfc00000} }, /* -1/8 */
/**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */
/**/ d9 = {{0x1c71c71c, 0x3fbc71c7} }, /* 1/9 */
/**/ dd9 = {{0x1c71c71c, 0x3c5c71c7} }, /* 1/9-d9 */
/**/ d10 = {{0x9999999a, 0xbfb99999} }, /* -1/10 */
/**/ dd10 = {{0x9999999a, 0x3c599999} }, /* -1/10-d10 */
/**/ d11 = {{0x745d1746, 0x3fb745d1} }, /* 1/11 */
/**/ d12 = {{0x55555555, 0xbfb55555} }, /* -1/12 */
/**/ d13 = {{0x13b13b14, 0x3fb3b13b} }, /* 1/13 */
/**/ d14 = {{0x92492492, 0xbfb24924} }, /* -1/14 */
/**/ d15 = {{0x11111111, 0x3fb11111} }, /* 1/15 */
/**/ d16 = {{0x00000000, 0xbfb00000} }, /* -1/16 */
/**/ d17 = {{0x1e1e1e1e, 0x3fae1e1e} }, /* 1/17 */
/**/ d18 = {{0x1c71c71c, 0xbfac71c7} }, /* -1/18 */
/**/ d19 = {{0xbca1af28, 0x3faaf286} }, /* 1/19 */
/**/ d20 = {{0x9999999a, 0xbfa99999} }, /* -1/20 */
/* constants */
/**/ sqrt_2 = {{0x667f3bcc, 0x3ff6a09e} }, /* sqrt(2) */
/**/ h1 = {{0x00000000, 0x3fd2e000} }, /* 151/2**9 */
/**/ h2 = {{0x00000000, 0x3f669000} }, /* 361/2**17 */
/**/ delu = {{0x00000000, 0x3f700000} }, /* 1/2**8 */
/**/ delv = {{0x00000000, 0x3ef00000} }, /* 1/2**16 */
/**/ ln2a = {{0xfefa3800, 0x3fe62e42} }, /* ln(2) 43 bits */
/**/ ln2b = {{0x93c76730, 0x3d2ef357} }, /* ln(2)-ln2a */
/**/ e1 = {{0x00000000, 0x3bbcc868} }, /* 6.095e-21 */
/**/ e2 = {{0x00000000, 0x3c1138ce} }, /* 2.334e-19 */
/**/ e3 = {{0x00000000, 0x3aa1565d} }, /* 2.801e-26 */
/**/ e4 = {{0x00000000, 0x39809d88} }, /* 1.024e-31 */
/**/ e[M] ={{{0x00000000, 0x37da223a} }, /* 1.2e-39 */
/**/ {{0x00000000, 0x35c851c4} }, /* 1.3e-49 */
/**/ {{0x00000000, 0x2ab85e51} }, /* 6.8e-103 */
/**/ {{0x00000000, 0x17383827} }},/* 8.1e-197 */
/**/ two54 = {{0x00000000, 0x43500000} }, /* 2**54 */
/**/ u03 = {{0xeb851eb8, 0x3f9eb851} }; /* 0.03 */
#endif
#endif
#define SQRT_2 sqrt_2.d
#define DEL_U delu.d
#define DEL_V delv.d
#define LN2A ln2a.d
#define LN2B ln2b.d
#define E1 e1.d
#define E2 e2.d
#define E3 e3.d
#define E4 e4.d
#define U03 u03.d
#endif