mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-29 05:51:10 +00:00
c22d2021a9
Although RISC-V Linux will enable the unaligned memory access handler by default, that is quite expensive in general, using memcpy will be much cheaper - just break down that into several load/store byte instructions. ARM and MIPS has similar issue: ARM: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=51456 MIPS: https://gcc.gnu.org/legacy-ml/gcc-help/2005-07/msg00325.html Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
351 lines
11 KiB
C
351 lines
11 KiB
C
/* Machine-dependent ELF dynamic relocation inline functions. RISC-V version.
|
|
Copyright (C) 2011-2022 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library. If not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef dl_machine_h
|
|
#define dl_machine_h
|
|
|
|
#define ELF_MACHINE_NAME "RISC-V"
|
|
|
|
#include <entry.h>
|
|
#include <elf/elf.h>
|
|
#include <sys/asm.h>
|
|
#include <dl-tls.h>
|
|
#include <dl-irel.h>
|
|
#include <dl-static-tls.h>
|
|
#include <dl-machine-rel.h>
|
|
|
|
#ifndef _RTLD_PROLOGUE
|
|
# define _RTLD_PROLOGUE(entry) \
|
|
".globl\t" __STRING (entry) "\n\t" \
|
|
".type\t" __STRING (entry) ", @function\n" \
|
|
__STRING (entry) ":\n\t"
|
|
#endif
|
|
|
|
#ifndef _RTLD_EPILOGUE
|
|
# define _RTLD_EPILOGUE(entry) \
|
|
".size\t" __STRING (entry) ", . - " __STRING (entry) "\n\t"
|
|
#endif
|
|
|
|
#define ELF_MACHINE_JMP_SLOT R_RISCV_JUMP_SLOT
|
|
|
|
#define elf_machine_type_class(type) \
|
|
((ELF_RTYPE_CLASS_PLT * ((type) == ELF_MACHINE_JMP_SLOT \
|
|
|| (__WORDSIZE == 32 && (type) == R_RISCV_TLS_DTPREL32) \
|
|
|| (__WORDSIZE == 32 && (type) == R_RISCV_TLS_DTPMOD32) \
|
|
|| (__WORDSIZE == 32 && (type) == R_RISCV_TLS_TPREL32) \
|
|
|| (__WORDSIZE == 64 && (type) == R_RISCV_TLS_DTPREL64) \
|
|
|| (__WORDSIZE == 64 && (type) == R_RISCV_TLS_DTPMOD64) \
|
|
|| (__WORDSIZE == 64 && (type) == R_RISCV_TLS_TPREL64))) \
|
|
| (ELF_RTYPE_CLASS_COPY * ((type) == R_RISCV_COPY)))
|
|
|
|
/* Return nonzero iff ELF header is compatible with the running host. */
|
|
static inline int __attribute_used__
|
|
elf_machine_matches_host (const ElfW(Ehdr) *ehdr)
|
|
{
|
|
/* We can only run RISC-V binaries. */
|
|
if (ehdr->e_machine != EM_RISCV)
|
|
return 0;
|
|
|
|
/* Ensure the library's floating-point ABI matches that of the running
|
|
system. For now we don't support mixing XLEN, so there's no need (or way)
|
|
to check it matches. */
|
|
#ifdef __riscv_float_abi_double
|
|
if ((ehdr->e_flags & EF_RISCV_FLOAT_ABI) != EF_RISCV_FLOAT_ABI_DOUBLE)
|
|
return 0;
|
|
#else
|
|
if ((ehdr->e_flags & EF_RISCV_FLOAT_ABI) != EF_RISCV_FLOAT_ABI_SOFT)
|
|
return 0;
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Return the run-time load address of the shared object. */
|
|
static inline ElfW(Addr)
|
|
elf_machine_load_address (void)
|
|
{
|
|
extern const ElfW(Ehdr) __ehdr_start attribute_hidden;
|
|
return (ElfW(Addr)) &__ehdr_start;
|
|
}
|
|
|
|
/* Return the link-time address of _DYNAMIC. */
|
|
static inline ElfW(Addr)
|
|
elf_machine_dynamic (void)
|
|
{
|
|
extern ElfW(Dyn) _DYNAMIC[] attribute_hidden;
|
|
return (ElfW(Addr)) _DYNAMIC - elf_machine_load_address ();
|
|
}
|
|
|
|
#define STRINGXP(X) __STRING (X)
|
|
#define STRINGXV(X) STRINGV_ (X)
|
|
#define STRINGV_(...) # __VA_ARGS__
|
|
|
|
/* Initial entry point code for the dynamic linker.
|
|
The C function `_dl_start' is the real entry point;
|
|
its return value is the user program's entry point. */
|
|
|
|
#define RTLD_START asm (\
|
|
".text\n\
|
|
" _RTLD_PROLOGUE (ENTRY_POINT) "\
|
|
mv a0, sp\n\
|
|
jal _dl_start\n\
|
|
" _RTLD_PROLOGUE (_dl_start_user) "\
|
|
# Stash user entry point in s0.\n\
|
|
mv s0, a0\n\
|
|
# Load the adjusted argument count.\n\
|
|
" STRINGXP (REG_L) " a1, 0(sp)\n\
|
|
# Call _dl_init (struct link_map *main_map, int argc, char **argv, char **env) \n\
|
|
" STRINGXP (REG_L) " a0, _rtld_local\n\
|
|
add a2, sp, " STRINGXP (SZREG) "\n\
|
|
sll a3, a1, " STRINGXP (PTRLOG) "\n\
|
|
add a3, a3, a2\n\
|
|
add a3, a3, " STRINGXP (SZREG) "\n\
|
|
# Stash the stack pointer in s1.\n\
|
|
mv s1, sp\n\
|
|
# Align stack to 128 bits for the _dl_init call.\n\
|
|
andi sp, sp,-16\n\
|
|
# Call the function to run the initializers.\n\
|
|
jal _dl_init\n\
|
|
# Restore the stack pointer for _start.\n\
|
|
mv sp, s1\n\
|
|
# Pass our finalizer function to _start.\n\
|
|
lla a0, _dl_fini\n\
|
|
# Jump to the user entry point.\n\
|
|
jr s0\n\
|
|
" _RTLD_EPILOGUE (ENTRY_POINT) \
|
|
_RTLD_EPILOGUE (_dl_start_user) "\
|
|
.previous" \
|
|
);
|
|
|
|
/* Names of the architecture-specific auditing callback functions. */
|
|
#define ARCH_LA_PLTENTER riscv_gnu_pltenter
|
|
#define ARCH_LA_PLTEXIT riscv_gnu_pltexit
|
|
|
|
/* Bias .got.plt entry by the offset requested by the PLT header. */
|
|
#define elf_machine_plt_value(map, reloc, value) (value)
|
|
|
|
static inline ElfW(Addr)
|
|
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
|
|
const ElfW(Sym) *refsym, const ElfW(Sym) *sym,
|
|
const ElfW(Rela) *reloc,
|
|
ElfW(Addr) *reloc_addr, ElfW(Addr) value)
|
|
{
|
|
return *reloc_addr = value;
|
|
}
|
|
|
|
#endif /* !dl_machine_h */
|
|
|
|
#ifdef RESOLVE_MAP
|
|
|
|
static inline void
|
|
__attribute__ ((always_inline))
|
|
elf_machine_rela_relative (ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
|
|
void *const reloc_addr)
|
|
{
|
|
/* R_RISCV_RELATIVE might located in debug info section which might not
|
|
aligned to XLEN bytes. Also support relocations on unaligned offsets. */
|
|
ElfW(Addr) value = l_addr + reloc->r_addend;
|
|
memcpy (reloc_addr, &value, sizeof value);
|
|
}
|
|
|
|
/* Perform a relocation described by R_INFO at the location pointed to
|
|
by RELOC_ADDR. SYM is the relocation symbol specified by R_INFO and
|
|
MAP is the object containing the reloc. */
|
|
|
|
static inline void
|
|
__attribute__ ((always_inline))
|
|
elf_machine_rela (struct link_map *map, struct r_scope_elem *scope[],
|
|
const ElfW(Rela) *reloc, const ElfW(Sym) *sym,
|
|
const struct r_found_version *version,
|
|
void *const reloc_addr, int skip_ifunc)
|
|
{
|
|
ElfW(Addr) r_info = reloc->r_info;
|
|
const unsigned long int r_type = ELFW (R_TYPE) (r_info);
|
|
ElfW(Addr) *addr_field = (ElfW(Addr) *) reloc_addr;
|
|
const ElfW(Sym) *const __attribute__ ((unused)) refsym = sym;
|
|
struct link_map *sym_map = RESOLVE_MAP (map, scope, &sym, version, r_type);
|
|
ElfW(Addr) value = 0;
|
|
if (sym_map != NULL)
|
|
value = SYMBOL_ADDRESS (sym_map, sym, true) + reloc->r_addend;
|
|
|
|
if (sym != NULL
|
|
&& __glibc_unlikely (ELFW(ST_TYPE) (sym->st_info) == STT_GNU_IFUNC)
|
|
&& __glibc_likely (sym->st_shndx != SHN_UNDEF)
|
|
&& __glibc_likely (!skip_ifunc))
|
|
value = elf_ifunc_invoke (value);
|
|
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_RISCV_RELATIVE:
|
|
elf_machine_rela_relative (map->l_addr, reloc, addr_field);
|
|
break;
|
|
case R_RISCV_JUMP_SLOT:
|
|
case __WORDSIZE == 64 ? R_RISCV_64 : R_RISCV_32:
|
|
*addr_field = value;
|
|
break;
|
|
|
|
# ifndef RTLD_BOOTSTRAP
|
|
case __WORDSIZE == 64 ? R_RISCV_TLS_DTPMOD64 : R_RISCV_TLS_DTPMOD32:
|
|
if (sym_map)
|
|
*addr_field = sym_map->l_tls_modid;
|
|
break;
|
|
|
|
case __WORDSIZE == 64 ? R_RISCV_TLS_DTPREL64 : R_RISCV_TLS_DTPREL32:
|
|
if (sym != NULL)
|
|
*addr_field = TLS_DTPREL_VALUE (sym) + reloc->r_addend;
|
|
break;
|
|
|
|
case __WORDSIZE == 64 ? R_RISCV_TLS_TPREL64 : R_RISCV_TLS_TPREL32:
|
|
if (sym != NULL)
|
|
{
|
|
CHECK_STATIC_TLS (map, sym_map);
|
|
*addr_field = TLS_TPREL_VALUE (sym_map, sym) + reloc->r_addend;
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_COPY:
|
|
{
|
|
if (__glibc_unlikely (sym == NULL))
|
|
/* This can happen in trace mode if an object could not be
|
|
found. */
|
|
break;
|
|
|
|
/* Handle TLS copy relocations. */
|
|
if (__glibc_unlikely (ELFW (ST_TYPE) (sym->st_info) == STT_TLS))
|
|
{
|
|
/* There's nothing to do if the symbol is in .tbss. */
|
|
if (__glibc_likely (sym->st_value >= sym_map->l_tls_initimage_size))
|
|
break;
|
|
value += (ElfW(Addr)) sym_map->l_tls_initimage - sym_map->l_addr;
|
|
}
|
|
|
|
size_t size = sym->st_size;
|
|
if (__glibc_unlikely (sym->st_size != refsym->st_size))
|
|
{
|
|
const char *strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
|
|
if (sym->st_size > refsym->st_size)
|
|
size = refsym->st_size;
|
|
if (sym->st_size > refsym->st_size || GLRO(dl_verbose))
|
|
_dl_error_printf ("\
|
|
%s: Symbol `%s' has different size in shared object, consider re-linking\n",
|
|
rtld_progname ?: "<program name unknown>",
|
|
strtab + refsym->st_name);
|
|
}
|
|
|
|
memcpy (reloc_addr, (void *)value, size);
|
|
break;
|
|
}
|
|
|
|
case R_RISCV_IRELATIVE:
|
|
value = map->l_addr + reloc->r_addend;
|
|
if (__glibc_likely (!skip_ifunc))
|
|
value = elf_ifunc_invoke (value);
|
|
*addr_field = value;
|
|
break;
|
|
|
|
case R_RISCV_NONE:
|
|
break;
|
|
# endif /* !RTLD_BOOTSTRAP */
|
|
|
|
default:
|
|
_dl_reloc_bad_type (map, r_type, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
__attribute__ ((always_inline))
|
|
elf_machine_lazy_rel (struct link_map *map, struct r_scope_elem *scope[],
|
|
ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
|
|
int skip_ifunc)
|
|
{
|
|
ElfW(Addr) *const reloc_addr = (void *) (l_addr + reloc->r_offset);
|
|
const unsigned int r_type = ELFW (R_TYPE) (reloc->r_info);
|
|
|
|
/* Check for unexpected PLT reloc type. */
|
|
if (__glibc_likely (r_type == R_RISCV_JUMP_SLOT))
|
|
{
|
|
if (__glibc_unlikely (map->l_mach.plt == 0))
|
|
{
|
|
if (l_addr)
|
|
*reloc_addr += l_addr;
|
|
}
|
|
else
|
|
*reloc_addr = map->l_mach.plt;
|
|
}
|
|
else if (__glibc_unlikely (r_type == R_RISCV_IRELATIVE))
|
|
{
|
|
ElfW(Addr) value = map->l_addr + reloc->r_addend;
|
|
if (__glibc_likely (!skip_ifunc))
|
|
value = elf_ifunc_invoke (value);
|
|
*reloc_addr = value;
|
|
}
|
|
else
|
|
_dl_reloc_bad_type (map, r_type, 1);
|
|
}
|
|
|
|
/* Set up the loaded object described by L so its stub function
|
|
will jump to the on-demand fixup code __dl_runtime_resolve. */
|
|
|
|
static inline int
|
|
__attribute__ ((always_inline))
|
|
elf_machine_runtime_setup (struct link_map *l, struct r_scope_elem *scope[],
|
|
int lazy, int profile)
|
|
{
|
|
#ifndef RTLD_BOOTSTRAP
|
|
/* If using PLTs, fill in the first two entries of .got.plt. */
|
|
if (l->l_info[DT_JMPREL])
|
|
{
|
|
extern void _dl_runtime_resolve (void) __attribute__ ((visibility ("hidden")));
|
|
ElfW(Addr) *gotplt = (ElfW(Addr) *) D_PTR (l, l_info[DT_PLTGOT]);
|
|
/* If a library is prelinked but we have to relocate anyway,
|
|
we have to be able to undo the prelinking of .got.plt.
|
|
The prelinker saved the address of .plt for us here. */
|
|
if (gotplt[1])
|
|
l->l_mach.plt = gotplt[1] + l->l_addr;
|
|
gotplt[0] = (ElfW(Addr)) &_dl_runtime_resolve;
|
|
gotplt[1] = (ElfW(Addr)) l;
|
|
}
|
|
|
|
if (l->l_type == lt_executable)
|
|
{
|
|
/* The __global_pointer$ may not be defined by the linker if the
|
|
$gp register does not be used to access the global variable
|
|
in the executable program. Therefore, the search symbol is
|
|
set to a weak symbol to avoid we error out if the
|
|
__global_pointer$ is not found. */
|
|
ElfW(Sym) gp_sym = { 0 };
|
|
gp_sym.st_info = (unsigned char) ELFW (ST_INFO (STB_WEAK, STT_NOTYPE));
|
|
|
|
const ElfW(Sym) *ref = &gp_sym;
|
|
_dl_lookup_symbol_x ("__global_pointer$", l, &ref,
|
|
l->l_scope, NULL, 0, 0, NULL);
|
|
if (ref)
|
|
asm (
|
|
"mv gp, %0\n"
|
|
:
|
|
: "r" (ref->st_value)
|
|
);
|
|
}
|
|
#endif
|
|
return lazy;
|
|
}
|
|
|
|
#endif /* RESOLVE_MAP */
|