mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-28 13:31:13 +00:00
688903eb3e
* All files with FSF copyright notices: Update copyright dates using scripts/update-copyrights. * locale/programs/charmap-kw.h: Regenerated. * locale/programs/locfile-kw.h: Likewise.
95 lines
2.8 KiB
C
95 lines
2.8 KiB
C
/* Single-precision log function.
|
|
Copyright (C) 2017-2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <shlib-compat.h>
|
|
#include <libm-alias-float.h>
|
|
#include "math_config.h"
|
|
|
|
/*
|
|
LOGF_TABLE_BITS = 4
|
|
LOGF_POLY_ORDER = 4
|
|
|
|
ULP error: 0.818 (nearest rounding.)
|
|
Relative error: 1.957 * 2^-26 (before rounding.)
|
|
*/
|
|
|
|
#define T __logf_data.tab
|
|
#define A __logf_data.poly
|
|
#define Ln2 __logf_data.ln2
|
|
#define N (1 << LOGF_TABLE_BITS)
|
|
#define OFF 0x3f330000
|
|
|
|
float
|
|
__logf (float x)
|
|
{
|
|
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
|
|
double_t z, r, r2, y, y0, invc, logc;
|
|
uint32_t ix, iz, tmp;
|
|
int k, i;
|
|
|
|
ix = asuint (x);
|
|
#if WANT_ROUNDING
|
|
/* Fix sign of zero with downward rounding when x==1. */
|
|
if (__glibc_unlikely (ix == 0x3f800000))
|
|
return 0;
|
|
#endif
|
|
if (__glibc_unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000))
|
|
{
|
|
/* x < 0x1p-126 or inf or nan. */
|
|
if (ix * 2 == 0)
|
|
return __math_divzerof (1);
|
|
if (ix == 0x7f800000) /* log(inf) == inf. */
|
|
return x;
|
|
if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
|
|
return __math_invalidf (x);
|
|
/* x is subnormal, normalize it. */
|
|
ix = asuint (x * 0x1p23f);
|
|
ix -= 23 << 23;
|
|
}
|
|
|
|
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
|
The range is split into N subintervals.
|
|
The ith subinterval contains z and c is near its center. */
|
|
tmp = ix - OFF;
|
|
i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
|
|
k = (int32_t) tmp >> 23; /* arithmetic shift */
|
|
iz = ix - (tmp & 0x1ff << 23);
|
|
invc = T[i].invc;
|
|
logc = T[i].logc;
|
|
z = (double_t) asfloat (iz);
|
|
|
|
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
|
|
r = z * invc - 1;
|
|
y0 = logc + (double_t) k * Ln2;
|
|
|
|
/* Pipelined polynomial evaluation to approximate log1p(r). */
|
|
r2 = r * r;
|
|
y = A[1] * r + A[2];
|
|
y = A[0] * r2 + y;
|
|
y = y * r2 + (y0 + r);
|
|
return (float) y;
|
|
}
|
|
#ifndef __logf
|
|
strong_alias (__logf, __ieee754_logf)
|
|
strong_alias (__logf, __logf_finite)
|
|
versioned_symbol (libm, __logf, logf, GLIBC_2_27);
|
|
libm_alias_float_other (__log, log)
|
|
#endif
|