mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-16 18:10:11 +00:00
ca58f1dbeb
2001-03-12 Ulrich Drepper <drepper@redhat.com> * sysdeps/ieee754/dbl-64/e_remainder.c: Fix handling of boundary conditions. * sysdeps/ieee754/dbl-64/e_pow.c: Fix handling of boundary conditions. * sysdeps/ieee754/dbl-64/s_sin.c (__sin): Handle Inf and NaN correctly. (__cos): Likewise. * sysdeps/ieee754/dbl-64/e_asin.c (__ieee754_asin): Handle NaN correctly. (__ieee754_acos): Likewise. redefinition. * sysdeps/ieee754/dbl-64/endian.h: Define also one of BIG_ENDI and LITTLE_ENDI. * sysdeps/ieee754/dbl-64/MathLib.h (Init_Lib): Use void as parameter list.
145 lines
4.0 KiB
C
145 lines
4.0 KiB
C
|
|
/*
|
|
* IBM Accurate Mathematical Library
|
|
* Copyright (c) International Business Machines Corp., 2001
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
/*******************************************************************/
|
|
/* */
|
|
/* MODULE_NAME: branred.c */
|
|
/* */
|
|
/* FUNCTIONS: branred */
|
|
/* */
|
|
/* FILES NEEDED: branred.h mydefs.h endian.h mpa.h */
|
|
/* mha.c */
|
|
/* */
|
|
/* Routine branred() performs range reduction of a double number */
|
|
/* x into Double length number a+aa,such that */
|
|
/* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */
|
|
/* Routine returns the integer (n mod 4) of the above description */
|
|
/* of x. */
|
|
/*******************************************************************/
|
|
|
|
#include "endian.h"
|
|
#include "mydefs.h"
|
|
#include "branred.h"
|
|
|
|
|
|
|
|
/*******************************************************************/
|
|
/* Routine branred() performs range reduction of a double number */
|
|
/* x into Double length number a+aa,such that */
|
|
/* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */
|
|
/* Routine return integer (n mod 4) */
|
|
/*******************************************************************/
|
|
int __branred(double x, double *a, double *aa)
|
|
{
|
|
int i,k;
|
|
#if 0
|
|
int n;
|
|
#endif
|
|
mynumber u,gor;
|
|
#if 0
|
|
mynumber v;
|
|
#endif
|
|
double r[6],s,t,sum,b,bb,sum1,sum2,b1,bb1,b2,bb2,x1,x2,t1,t2;
|
|
|
|
x*=tm600.x;
|
|
t=x*split; /* split x to two numbers */
|
|
x1=t-(t-x);
|
|
x2=x-x1;
|
|
sum=0;
|
|
u.x = x1;
|
|
k = (u.i[HIGH_HALF]>>20)&2047;
|
|
k = (k-450)/24;
|
|
if (k<0)
|
|
k=0;
|
|
gor.x = t576.x;
|
|
gor.i[HIGH_HALF] -= ((k*24)<<20);
|
|
for (i=0;i<6;i++)
|
|
{ r[i] = x1*toverp[k+i]*gor.x; gor.x *= tm24.x; }
|
|
for (i=0;i<3;i++) {
|
|
s=(r[i]+big.x)-big.x;
|
|
sum+=s;
|
|
r[i]-=s;
|
|
}
|
|
t=0;
|
|
for (i=0;i<6;i++)
|
|
t+=r[5-i];
|
|
bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
|
|
s=(t+big.x)-big.x;
|
|
sum+=s;
|
|
t-=s;
|
|
b=t+bb;
|
|
bb=(t-b)+bb;
|
|
s=(sum+big1.x)-big1.x;
|
|
sum-=s;
|
|
b1=b;
|
|
bb1=bb;
|
|
sum1=sum;
|
|
sum=0;
|
|
|
|
u.x = x2;
|
|
k = (u.i[HIGH_HALF]>>20)&2047;
|
|
k = (k-450)/24;
|
|
if (k<0)
|
|
k=0;
|
|
gor.x = t576.x;
|
|
gor.i[HIGH_HALF] -= ((k*24)<<20);
|
|
for (i=0;i<6;i++)
|
|
{ r[i] = x2*toverp[k+i]*gor.x; gor.x *= tm24.x; }
|
|
for (i=0;i<3;i++) {
|
|
s=(r[i]+big.x)-big.x;
|
|
sum+=s;
|
|
r[i]-=s;
|
|
}
|
|
t=0;
|
|
for (i=0;i<6;i++)
|
|
t+=r[5-i];
|
|
bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
|
|
s=(t+big.x)-big.x;
|
|
sum+=s;
|
|
t-=s;
|
|
b=t+bb;
|
|
bb=(t-b)+bb;
|
|
s=(sum+big1.x)-big1.x;
|
|
sum-=s;
|
|
|
|
b2=b;
|
|
bb2=bb;
|
|
sum2=sum;
|
|
|
|
sum=sum1+sum2;
|
|
b=b1+b2;
|
|
bb = (ABS(b1)>ABS(b2))? (b1-b)+b2 : (b2-b)+b1;
|
|
if (b > 0.5)
|
|
{b-=1.0; sum+=1.0;}
|
|
else if (b < -0.5)
|
|
{b+=1.0; sum-=1.0;}
|
|
s=b+(bb+bb1+bb2);
|
|
t=((b-s)+bb)+(bb1+bb2);
|
|
b=s*split;
|
|
t1=b-(b-s);
|
|
t2=s-t1;
|
|
b=s*hp0.x;
|
|
bb=(((t1*mp1.x-b)+t1*mp2.x)+t2*mp1.x)+(t2*mp2.x+s*hp1.x+t*hp0.x);
|
|
s=b+bb;
|
|
t=(b-s)+bb;
|
|
*a=s;
|
|
*aa=t;
|
|
return ((int) sum)&3; /* return quater of unit circle */
|
|
}
|