mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-14 21:10:19 +00:00
177 lines
5.2 KiB
C
177 lines
5.2 KiB
C
/* Copyright (C) 1995-2012 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "gmp.h"
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
#include <ieee754.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
/* Convert a `long double' in IBM extended format to a multi-precision
|
|
integer representing the significand scaled up by its number of
|
|
bits (106 for long double) and an integral power of two (MPN
|
|
frexpl). */
|
|
|
|
mp_size_t
|
|
__mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
|
|
int *expt, int *is_neg,
|
|
long double value)
|
|
{
|
|
union ibm_extended_long_double u;
|
|
unsigned long long hi, lo;
|
|
int ediff;
|
|
u.d = value;
|
|
|
|
*is_neg = u.ieee.negative;
|
|
*expt = (int) u.ieee.exponent - IBM_EXTENDED_LONG_DOUBLE_BIAS;
|
|
|
|
lo = ((long long) u.ieee.mantissa2 << 32) | u.ieee.mantissa3;
|
|
hi = ((long long) u.ieee.mantissa0 << 32) | u.ieee.mantissa1;
|
|
/* If the lower double is not a denomal or zero then set the hidden
|
|
53rd bit. */
|
|
if (u.ieee.exponent2 > 0)
|
|
{
|
|
lo |= 1LL << 52;
|
|
|
|
/* The lower double is normalized separately from the upper. We may
|
|
need to adjust the lower manitissa to reflect this. */
|
|
ediff = u.ieee.exponent - u.ieee.exponent2;
|
|
if (ediff > 53)
|
|
lo = lo >> (ediff-53);
|
|
}
|
|
/* The high double may be rounded and the low double reflects the
|
|
difference between the long double and the rounded high double
|
|
value. This is indicated by a differnce between the signs of the
|
|
high and low doubles. */
|
|
if ((u.ieee.negative != u.ieee.negative2)
|
|
&& ((u.ieee.exponent2 != 0) && (lo != 0L)))
|
|
{
|
|
lo = (1ULL << 53) - lo;
|
|
if (hi == 0LL)
|
|
{
|
|
/* we have a borrow from the hidden bit, so shift left 1. */
|
|
hi = 0x0ffffffffffffeLL | (lo >> 51);
|
|
lo = 0x1fffffffffffffLL & (lo << 1);
|
|
(*expt)--;
|
|
}
|
|
else
|
|
hi--;
|
|
}
|
|
#if BITS_PER_MP_LIMB == 32
|
|
/* Combine the mantissas to be contiguous. */
|
|
res_ptr[0] = lo;
|
|
res_ptr[1] = (hi << (53 - 32)) | (lo >> 32);
|
|
res_ptr[2] = hi >> 11;
|
|
res_ptr[3] = hi >> (32 + 11);
|
|
#define N 4
|
|
#elif BITS_PER_MP_LIMB == 64
|
|
/* Combine the two mantissas to be contiguous. */
|
|
res_ptr[0] = (hi << 53) | lo;
|
|
res_ptr[1] = hi >> 11;
|
|
#define N 2
|
|
#else
|
|
#error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
|
|
#endif
|
|
/* The format does not fill the last limb. There are some zeros. */
|
|
#define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \
|
|
- (LDBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB)))
|
|
|
|
if (u.ieee.exponent == 0)
|
|
{
|
|
/* A biased exponent of zero is a special case.
|
|
Either it is a zero or it is a denormal number. */
|
|
if (res_ptr[0] == 0 && res_ptr[1] == 0
|
|
&& res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4. */
|
|
/* It's zero. */
|
|
*expt = 0;
|
|
else
|
|
{
|
|
/* It is a denormal number, meaning it has no implicit leading
|
|
one bit, and its exponent is in fact the format minimum. We
|
|
use DBL_MIN_EXP instead of LDBL_MIN_EXP below because the
|
|
latter describes the properties of both parts together, but
|
|
the exponent is computed from the high part only. */
|
|
int cnt;
|
|
|
|
#if N == 2
|
|
if (res_ptr[N - 1] != 0)
|
|
{
|
|
count_leading_zeros (cnt, res_ptr[N - 1]);
|
|
cnt -= NUM_LEADING_ZEROS;
|
|
res_ptr[N - 1] = res_ptr[N - 1] << cnt
|
|
| (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt));
|
|
res_ptr[0] <<= cnt;
|
|
*expt = DBL_MIN_EXP - 1 - cnt;
|
|
}
|
|
else
|
|
{
|
|
count_leading_zeros (cnt, res_ptr[0]);
|
|
if (cnt >= NUM_LEADING_ZEROS)
|
|
{
|
|
res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS);
|
|
res_ptr[0] = 0;
|
|
}
|
|
else
|
|
{
|
|
res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt);
|
|
res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt);
|
|
}
|
|
*expt = DBL_MIN_EXP - 1
|
|
- (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt;
|
|
}
|
|
#else
|
|
int j, k, l;
|
|
|
|
for (j = N - 1; j > 0; j--)
|
|
if (res_ptr[j] != 0)
|
|
break;
|
|
|
|
count_leading_zeros (cnt, res_ptr[j]);
|
|
cnt -= NUM_LEADING_ZEROS;
|
|
l = N - 1 - j;
|
|
if (cnt < 0)
|
|
{
|
|
cnt += BITS_PER_MP_LIMB;
|
|
l--;
|
|
}
|
|
if (!cnt)
|
|
for (k = N - 1; k >= l; k--)
|
|
res_ptr[k] = res_ptr[k-l];
|
|
else
|
|
{
|
|
for (k = N - 1; k > l; k--)
|
|
res_ptr[k] = res_ptr[k-l] << cnt
|
|
| res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt);
|
|
res_ptr[k--] = res_ptr[0] << cnt;
|
|
}
|
|
|
|
for (; k >= 0; k--)
|
|
res_ptr[k] = 0;
|
|
*expt = DBL_MIN_EXP - 1 - l * BITS_PER_MP_LIMB - cnt;
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
/* Add the implicit leading one bit for a normalized number. */
|
|
res_ptr[N - 1] |= (mp_limb_t) 1 << (LDBL_MANT_DIG - 1
|
|
- ((N - 1) * BITS_PER_MP_LIMB));
|
|
|
|
return N;
|
|
}
|