mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-26 20:51:11 +00:00
73 lines
1.9 KiB
C
73 lines
1.9 KiB
C
/* e_acoshl.c -- long double version of e_acosh.c.
|
|
* Conversion to long double by Ulrich Drepper,
|
|
* Cygnus Support, drepper@cygnus.com.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
|
static char rcsid[] = "$NetBSD: $";
|
|
#endif
|
|
|
|
/* __ieee754_acoshl(x)
|
|
* Method :
|
|
* Based on
|
|
* acoshl(x) = logl [ x + sqrtl(x*x-1) ]
|
|
* we have
|
|
* acoshl(x) := logl(x)+ln2, if x is large; else
|
|
* acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else
|
|
* acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1.
|
|
*
|
|
* Special cases:
|
|
* acoshl(x) is NaN with signal if x<1.
|
|
* acoshl(NaN) is NaN without signal.
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
|
|
#ifdef __STDC__
|
|
static const long double
|
|
#else
|
|
static long double
|
|
#endif
|
|
one = 1.0,
|
|
ln2 = 6.931471805599453094287e-01L; /* 0x3FFE, 0xB17217F7, 0xD1CF79AC */
|
|
|
|
#ifdef __STDC__
|
|
long double __ieee754_acoshl(long double x)
|
|
#else
|
|
long double __ieee754_acoshl(x)
|
|
long double x;
|
|
#endif
|
|
{
|
|
long double t;
|
|
u_int32_t se,i0,i1;
|
|
GET_LDOUBLE_WORDS(se,i0,i1,x);
|
|
if(se<0x3fff || se & 0x8000) { /* x < 1 */
|
|
return (x-x)/(x-x);
|
|
} else if(se >=0x401b) { /* x > 2**28 */
|
|
if(se >=0x7fff) { /* x is inf of NaN */
|
|
return x+x;
|
|
} else
|
|
return __ieee754_logl(x)+ln2; /* acoshl(huge)=logl(2x) */
|
|
} else if(((se-0x3fff)|i0|i1)==0) {
|
|
return 0.0; /* acosh(1) = 0 */
|
|
} else if (se > 0x4000) { /* 2**28 > x > 2 */
|
|
t=x*x;
|
|
return __ieee754_logl(2.0*x-one/(x+__ieee754_sqrtl(t-one)));
|
|
} else { /* 1<x<2 */
|
|
t = x-one;
|
|
return __log1pl(t+__sqrtl(2.0*t+t*t));
|
|
}
|
|
}
|