mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-10 23:30:07 +00:00
290 lines
9.4 KiB
C
290 lines
9.4 KiB
C
/* Conversion loop frame work.
|
|
Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1998.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/* This file provides a frame for the reader loop in all conversion modules.
|
|
The actual code must (of course) be provided in the actual module source
|
|
code but certain actions can be written down generically, with some
|
|
customization options which are these:
|
|
|
|
MIN_NEEDED_INPUT minimal number of input bytes needed for the next
|
|
conversion.
|
|
MIN_NEEDED_OUTPUT minimal number of bytes produced by the next round
|
|
of conversion.
|
|
|
|
MAX_NEEDED_INPUT you guess it, this is the maximal number of input
|
|
bytes needed. It defaults to MIN_NEEDED_INPUT
|
|
MAX_NEEDED_OUTPUT likewise for output bytes.
|
|
|
|
LOOPFCT name of the function created. If not specified
|
|
the name is `loop' but this prevents the use
|
|
of multiple functions in the same file.
|
|
|
|
BODY this is supposed to expand to the body of the loop.
|
|
The user must provide this.
|
|
|
|
EXTRA_LOOP_DECLS extra arguments passed from converion loop call.
|
|
|
|
INIT_PARAMS code to define and initialize variables from params.
|
|
UPDATE_PARAMS code to store result in params.
|
|
*/
|
|
|
|
#include <endian.h>
|
|
#include <gconv.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <wchar.h>
|
|
#include <sys/param.h> /* For MIN. */
|
|
#define __need_size_t
|
|
#include <stddef.h>
|
|
|
|
|
|
/* We have to provide support for machines which are not able to handled
|
|
unaligned memory accesses. Some of the character encodings have
|
|
representations with a fixed width of 2 or 4 bytes. But if we cannot
|
|
access unaligned memory we still have to read byte-wise. */
|
|
#undef FCTNAME2
|
|
#if defined _STRING_ARCH_unaligned || !defined DEFINE_UNALIGNED
|
|
/* We can handle unaligned memory access. */
|
|
# define get16(addr) *((uint16_t *) (addr))
|
|
# define get32(addr) *((uint32_t *) (addr))
|
|
|
|
/* We need no special support for writing values either. */
|
|
# define put16(addr, val) *((uint16_t *) (addr)) = (val)
|
|
# define put32(addr, val) *((uint32_t *) (addr)) = (val)
|
|
|
|
# define FCTNAME2(name) name
|
|
#else
|
|
/* Distinguish between big endian and little endian. */
|
|
# if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
# define get16(addr) \
|
|
(((__const unsigned char *) (addr))[1] << 8 \
|
|
| ((__const unsigned char *) (addr))[0])
|
|
# define get32(addr) \
|
|
(((((__const unsigned char *) (addr))[3] << 8 \
|
|
| ((__const unsigned char *) (addr))[2]) << 8 \
|
|
| ((__const unsigned char *) (addr))[1]) << 8 \
|
|
| ((__const unsigned char *) (addr))[0])
|
|
|
|
# define put16(addr, val) \
|
|
({ uint16_t __val = (val); \
|
|
((unsigned char *) (addr))[0] = __val; \
|
|
((unsigned char *) (addr))[1] = __val >> 8; \
|
|
(void) 0; })
|
|
# define put32(addr, val) \
|
|
({ uint32_t __val = (val); \
|
|
((unsigned char *) (addr))[0] = __val; \
|
|
__val >>= 8; \
|
|
((unsigned char *) (addr))[1] = __val; \
|
|
__val >>= 8; \
|
|
((unsigned char *) (addr))[2] = __val; \
|
|
__val >>= 8; \
|
|
((unsigned char *) (addr))[3] = __val; \
|
|
(void) 0; })
|
|
# else
|
|
# define get16(addr) \
|
|
(((__const unsigned char *) (addr))[0] << 8 \
|
|
| ((__const unsigned char *) (addr))[1])
|
|
# define get32(addr) \
|
|
(((((__const unsigned char *) (addr))[0] << 8 \
|
|
| ((__const unsigned char *) (addr))[1]) << 8 \
|
|
| ((__const unsigned char *) (addr))[2]) << 8 \
|
|
| ((__const unsigned char *) (addr))[3])
|
|
|
|
# define put16(addr, val) \
|
|
({ uint16_t __val = (val); \
|
|
((unsigned char *) (addr))[1] = __val; \
|
|
((unsigned char *) (addr))[2] = __val >> 8; \
|
|
(void) 0; })
|
|
# define put32(addr, val) \
|
|
({ uint32_t __val = (val); \
|
|
((unsigned char *) (addr))[3] = __val; \
|
|
__val >>= 8; \
|
|
((unsigned char *) (addr))[2] = __val; \
|
|
__val >>= 8; \
|
|
((unsigned char *) (addr))[1] = __val; \
|
|
__val >>= 8; \
|
|
((unsigned char *) (addr))[0] = __val; \
|
|
(void) 0; })
|
|
# endif
|
|
|
|
# define FCTNAME2(name) name##_unaligned
|
|
#endif
|
|
#define FCTNAME(name) FCTNAME2(name)
|
|
|
|
|
|
/* We need at least one byte for the next round. */
|
|
#ifndef MIN_NEEDED_INPUT
|
|
# error "MIN_NEEDED_INPUT definition missing"
|
|
#endif
|
|
|
|
/* Let's see how many bytes we produce. */
|
|
#ifndef MAX_NEEDED_INPUT
|
|
# define MAX_NEEDED_INPUT MIN_NEEDED_INPUT
|
|
#endif
|
|
|
|
/* We produce at least one byte in the next round. */
|
|
#ifndef MIN_NEEDED_OUTPUT
|
|
# error "MIN_NEEDED_OUTPUT definition missing"
|
|
#endif
|
|
|
|
/* Let's see how many bytes we produce. */
|
|
#ifndef MAX_NEEDED_OUTPUT
|
|
# define MAX_NEEDED_OUTPUT MIN_NEEDED_OUTPUT
|
|
#endif
|
|
|
|
/* Default name for the function. */
|
|
#ifndef LOOPFCT
|
|
# define LOOPFCT loop
|
|
#endif
|
|
|
|
/* Make sure we have a loop body. */
|
|
#ifndef BODY
|
|
# error "Definition of BODY missing for function" LOOPFCT
|
|
#endif
|
|
|
|
|
|
/* If no arguments have to passed to the loop function define the macro
|
|
as empty. */
|
|
#ifndef EXTRA_LOOP_DECLS
|
|
# define EXTRA_LOOP_DECLS
|
|
#endif
|
|
|
|
|
|
/* The function returns the status, as defined in gconv.h. */
|
|
static inline int
|
|
FCTNAME (LOOPFCT) (const unsigned char **inptrp, const unsigned char *inend,
|
|
unsigned char **outptrp, unsigned char *outend,
|
|
mbstate_t *state, void *data, size_t *converted
|
|
EXTRA_LOOP_DECLS)
|
|
{
|
|
int result = __GCONV_OK;
|
|
const unsigned char *inptr = *inptrp;
|
|
unsigned char *outptr = *outptrp;
|
|
|
|
/* We run one loop where we avoid checks for underflow/overflow of the
|
|
buffers to speed up the conversion a bit. */
|
|
size_t min_in_rounds = (inend - inptr) / MAX_NEEDED_INPUT;
|
|
size_t min_out_rounds = (outend - outptr) / MAX_NEEDED_OUTPUT;
|
|
size_t min_rounds = MIN (min_in_rounds, min_out_rounds);
|
|
|
|
#ifdef INIT_PARAMS
|
|
INIT_PARAMS;
|
|
#endif
|
|
|
|
#undef NEED_LENGTH_TEST
|
|
#define NEED_LENGTH_TEST 0
|
|
while (min_rounds-- > 0)
|
|
{
|
|
/* Here comes the body the user provides. It can stop with RESULT
|
|
set to GCONV_INCOMPLETE_INPUT (if the size of the input characters
|
|
vary in size), GCONV_ILLEGAL_INPUT, or GCONV_FULL_OUTPUT (if the
|
|
output characters vary in size. */
|
|
BODY
|
|
}
|
|
|
|
if (result == __GCONV_OK)
|
|
{
|
|
#if MIN_NEEDED_INPUT == MAX_NEEDED_INPUT \
|
|
&& MIN_NEEDED_OUTPUT == MAX_NEEDED_OUTPUT
|
|
/* We don't need to start another loop since we were able to determine
|
|
the maximal number of characters to copy in advance. What remains
|
|
to be determined is the status. */
|
|
if (inptr == inend)
|
|
/* No more input. */
|
|
result = __GCONV_EMPTY_INPUT;
|
|
else if ((MIN_NEEDED_OUTPUT != 1 && outptr + MIN_NEEDED_OUTPUT > outend)
|
|
|| (MIN_NEEDED_OUTPUT == 1 && outptr >= outend))
|
|
/* Overflow in the output buffer. */
|
|
result = __GCONV_FULL_OUTPUT;
|
|
else
|
|
/* We have something left in the input buffer. */
|
|
result = __GCONV_INCOMPLETE_INPUT;
|
|
#else
|
|
result = __GCONV_EMPTY_INPUT;
|
|
|
|
# undef NEED_LENGTH_TEST
|
|
# define NEED_LENGTH_TEST 1
|
|
while (inptr != inend)
|
|
{
|
|
/* `if' cases for MIN_NEEDED_OUTPUT ==/!= 1 is made to help the
|
|
compiler generating better code. It will optimized away
|
|
since MIN_NEEDED_OUTPUT is always a constant. */
|
|
if ((MIN_NEEDED_OUTPUT != 1 && outptr + MIN_NEEDED_OUTPUT > outend)
|
|
|| (MIN_NEEDED_OUTPUT == 1 && outptr >= outend))
|
|
{
|
|
/* Overflow in the output buffer. */
|
|
result = __GCONV_FULL_OUTPUT;
|
|
break;
|
|
}
|
|
if (MIN_NEEDED_INPUT > 1 && inptr + MIN_NEEDED_INPUT > inend)
|
|
{
|
|
/* We don't have enough input for another complete input
|
|
character. */
|
|
result = __GCONV_INCOMPLETE_INPUT;
|
|
break;
|
|
}
|
|
|
|
/* Here comes the body the user provides. It can stop with
|
|
RESULT set to GCONV_INCOMPLETE_INPUT (if the size of the
|
|
input characters vary in size), GCONV_ILLEGAL_INPUT, or
|
|
GCONV_FULL_OUTPUT (if the output characters vary in size). */
|
|
BODY
|
|
}
|
|
#endif /* Input and output charset are not both fixed width. */
|
|
}
|
|
|
|
/* Update the pointers pointed to by the parameters. */
|
|
*inptrp = inptr;
|
|
*outptrp = outptr;
|
|
#ifdef UPDATE_PARAMS
|
|
UPDATE_PARAMS;
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
#undef get16
|
|
#undef get32
|
|
#undef put16
|
|
#undef put32
|
|
|
|
/* Include the file a second time to define the function to define the
|
|
function to handle unaligned access. */
|
|
#if !defined _STRING_ARCH_unaligned && !defined DEFINE_UNALIGNED
|
|
# define DEFINE_UNALIGNED
|
|
# include "loop.c"
|
|
# undef DEFINE_UNALIGNED
|
|
#endif
|
|
|
|
|
|
/* We remove the macro definitions so that we can include this file again
|
|
for the definition of another function. */
|
|
#undef MIN_NEEDED_INPUT
|
|
#undef MAX_NEEDED_INPUT
|
|
#undef MIN_NEEDED_OUTPUT
|
|
#undef MAX_NEEDED_OUTPUT
|
|
#undef LOOPFCT
|
|
#undef BODY
|
|
#undef LOOPFCT
|
|
#undef EXTRA_LOOP_DECLS
|
|
#undef INIT_PARAMS
|
|
#undef UPDATE_PARAMS
|