mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-07 10:00:07 +00:00
83a986e9fb
The new code:
1. prioritizes smaller user-arg lengths more.
2. optimizes target placement more carefully
3. reuses logic more
4. fixes up various inefficiencies in the logic. The biggest
case here is the `lzcnt` logic for checking returns which
saves either a branch or multiple instructions.
The total code size saving is: 263 bytes
Geometric Mean of all benchmarks New / Old: 0.755
Regressions:
There are some regressions. Particularly where the length (user arg
length) is large but the position of the match char is near the
beginning of the string (in first VEC). This case has roughly a
20% regression.
This is because the new logic gives the hot path for immediate matches
to shorter lengths (the more common input). This case has roughly
a 35% speedup.
Full xcheck passes on x86_64.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit b4209615a0
)
335 lines
7.6 KiB
ArmAsm
335 lines
7.6 KiB
ArmAsm
/* memrchr optimized with 256-bit EVEX instructions.
|
|
Copyright (C) 2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#if IS_IN (libc)
|
|
|
|
# include <sysdep.h>
|
|
# include "evex256-vecs.h"
|
|
# if VEC_SIZE != 32
|
|
# error "VEC_SIZE != 32 unimplemented"
|
|
# endif
|
|
|
|
# ifndef MEMRCHR
|
|
# define MEMRCHR __memrchr_evex
|
|
# endif
|
|
|
|
# define PAGE_SIZE 4096
|
|
# define VECMATCH VEC(0)
|
|
|
|
.section SECTION(.text), "ax", @progbits
|
|
ENTRY_P2ALIGN(MEMRCHR, 6)
|
|
# ifdef __ILP32__
|
|
/* Clear upper bits. */
|
|
and %RDX_LP, %RDX_LP
|
|
# else
|
|
test %RDX_LP, %RDX_LP
|
|
# endif
|
|
jz L(zero_0)
|
|
|
|
/* Get end pointer. Minus one for two reasons. 1) It is necessary for a
|
|
correct page cross check and 2) it correctly sets up end ptr to be
|
|
subtract by lzcnt aligned. */
|
|
leaq -1(%rdi, %rdx), %rax
|
|
vpbroadcastb %esi, %VECMATCH
|
|
|
|
/* Check if we can load 1x VEC without cross a page. */
|
|
testl $(PAGE_SIZE - VEC_SIZE), %eax
|
|
jz L(page_cross)
|
|
|
|
/* Don't use rax for pointer here because EVEX has better encoding with
|
|
offset % VEC_SIZE == 0. */
|
|
vpcmpb $0, -(VEC_SIZE)(%rdi, %rdx), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
|
|
/* Fall through for rdx (len) <= VEC_SIZE (expect small sizes). */
|
|
cmpq $VEC_SIZE, %rdx
|
|
ja L(more_1x_vec)
|
|
L(ret_vec_x0_test):
|
|
|
|
/* If ecx is zero (no matches) lzcnt will set it 32 (VEC_SIZE) which
|
|
will guarantee edx (len) is less than it. */
|
|
lzcntl %ecx, %ecx
|
|
cmpl %ecx, %edx
|
|
jle L(zero_0)
|
|
subq %rcx, %rax
|
|
ret
|
|
|
|
/* Fits in aligning bytes of first cache line. */
|
|
L(zero_0):
|
|
xorl %eax, %eax
|
|
ret
|
|
|
|
.p2align 4,, 9
|
|
L(ret_vec_x0_dec):
|
|
decq %rax
|
|
L(ret_vec_x0):
|
|
lzcntl %ecx, %ecx
|
|
subq %rcx, %rax
|
|
ret
|
|
|
|
.p2align 4,, 10
|
|
L(more_1x_vec):
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x0)
|
|
|
|
/* Align rax (pointer to string). */
|
|
andq $-VEC_SIZE, %rax
|
|
|
|
/* Recompute length after aligning. */
|
|
movq %rax, %rdx
|
|
|
|
/* Need no matter what. */
|
|
vpcmpb $0, -(VEC_SIZE)(%rax), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
|
|
subq %rdi, %rdx
|
|
|
|
cmpq $(VEC_SIZE * 2), %rdx
|
|
ja L(more_2x_vec)
|
|
L(last_2x_vec):
|
|
|
|
/* Must dec rax because L(ret_vec_x0_test) expects it. */
|
|
decq %rax
|
|
cmpl $VEC_SIZE, %edx
|
|
jbe L(ret_vec_x0_test)
|
|
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x0)
|
|
|
|
/* Don't use rax for pointer here because EVEX has better encoding with
|
|
offset % VEC_SIZE == 0. */
|
|
vpcmpb $0, -(VEC_SIZE * 2)(%rdi, %rdx), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
/* NB: 64-bit lzcnt. This will naturally add 32 to position. */
|
|
lzcntq %rcx, %rcx
|
|
cmpl %ecx, %edx
|
|
jle L(zero_0)
|
|
subq %rcx, %rax
|
|
ret
|
|
|
|
/* Inexpensive place to put this regarding code size / target alignments
|
|
/ ICache NLP. Necessary for 2-byte encoding of jump to page cross
|
|
case which in turn is necessary for hot path (len <= VEC_SIZE) to fit
|
|
in first cache line. */
|
|
L(page_cross):
|
|
movq %rax, %rsi
|
|
andq $-VEC_SIZE, %rsi
|
|
vpcmpb $0, (%rsi), %VECMATCH, %k0
|
|
kmovd %k0, %r8d
|
|
/* Shift out negative alignment (because we are starting from endptr and
|
|
working backwards). */
|
|
movl %eax, %ecx
|
|
/* notl because eax already has endptr - 1. (-x = ~(x - 1)). */
|
|
notl %ecx
|
|
shlxl %ecx, %r8d, %ecx
|
|
cmpq %rdi, %rsi
|
|
ja L(more_1x_vec)
|
|
lzcntl %ecx, %ecx
|
|
cmpl %ecx, %edx
|
|
jle L(zero_1)
|
|
subq %rcx, %rax
|
|
ret
|
|
|
|
/* Continue creating zero labels that fit in aligning bytes and get
|
|
2-byte encoding / are in the same cache line as condition. */
|
|
L(zero_1):
|
|
xorl %eax, %eax
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(ret_vec_x1):
|
|
/* This will naturally add 32 to position. */
|
|
bsrl %ecx, %ecx
|
|
leaq -(VEC_SIZE * 2)(%rcx, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(more_2x_vec):
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x0_dec)
|
|
|
|
vpcmpb $0, -(VEC_SIZE * 2)(%rax), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x1)
|
|
|
|
/* Need no matter what. */
|
|
vpcmpb $0, -(VEC_SIZE * 3)(%rax), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
|
|
subq $(VEC_SIZE * 4), %rdx
|
|
ja L(more_4x_vec)
|
|
|
|
cmpl $(VEC_SIZE * -1), %edx
|
|
jle L(ret_vec_x2_test)
|
|
L(last_vec):
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x2)
|
|
|
|
|
|
/* Need no matter what. */
|
|
vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
lzcntl %ecx, %ecx
|
|
subq $(VEC_SIZE * 3 + 1), %rax
|
|
subq %rcx, %rax
|
|
cmpq %rax, %rdi
|
|
ja L(zero_1)
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(ret_vec_x2_test):
|
|
lzcntl %ecx, %ecx
|
|
subq $(VEC_SIZE * 2 + 1), %rax
|
|
subq %rcx, %rax
|
|
cmpq %rax, %rdi
|
|
ja L(zero_1)
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(ret_vec_x2):
|
|
bsrl %ecx, %ecx
|
|
leaq -(VEC_SIZE * 3)(%rcx, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(ret_vec_x3):
|
|
bsrl %ecx, %ecx
|
|
leaq -(VEC_SIZE * 4)(%rcx, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(more_4x_vec):
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x2)
|
|
|
|
vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x3)
|
|
|
|
/* Check if near end before re-aligning (otherwise might do an
|
|
unnecessary loop iteration). */
|
|
addq $-(VEC_SIZE * 4), %rax
|
|
cmpq $(VEC_SIZE * 4), %rdx
|
|
jbe L(last_4x_vec)
|
|
|
|
decq %rax
|
|
andq $-(VEC_SIZE * 4), %rax
|
|
movq %rdi, %rdx
|
|
/* Get endptr for loop in rdx. NB: Can't just do while rax > rdi because
|
|
lengths that overflow can be valid and break the comparison. */
|
|
andq $-(VEC_SIZE * 4), %rdx
|
|
|
|
.p2align 4
|
|
L(loop_4x_vec):
|
|
/* Store 1 were not-equals and 0 where equals in k1 (used to mask later
|
|
on). */
|
|
vpcmpb $4, (VEC_SIZE * 3)(%rax), %VECMATCH, %k1
|
|
|
|
/* VEC(2/3) will have zero-byte where we found a CHAR. */
|
|
vpxorq (VEC_SIZE * 2)(%rax), %VECMATCH, %VEC(2)
|
|
vpxorq (VEC_SIZE * 1)(%rax), %VECMATCH, %VEC(3)
|
|
vpcmpb $0, (VEC_SIZE * 0)(%rax), %VECMATCH, %k4
|
|
|
|
/* Combine VEC(2/3) with min and maskz with k1 (k1 has zero bit where
|
|
CHAR is found and VEC(2/3) have zero-byte where CHAR is found. */
|
|
vpminub %VEC(2), %VEC(3), %VEC(3){%k1}{z}
|
|
vptestnmb %VEC(3), %VEC(3), %k2
|
|
|
|
/* Any 1s and we found CHAR. */
|
|
kortestd %k2, %k4
|
|
jnz L(loop_end)
|
|
|
|
addq $-(VEC_SIZE * 4), %rax
|
|
cmpq %rdx, %rax
|
|
jne L(loop_4x_vec)
|
|
|
|
/* Need to re-adjust rdx / rax for L(last_4x_vec). */
|
|
subq $-(VEC_SIZE * 4), %rdx
|
|
movq %rdx, %rax
|
|
subl %edi, %edx
|
|
L(last_4x_vec):
|
|
|
|
/* Used no matter what. */
|
|
vpcmpb $0, (VEC_SIZE * -1)(%rax), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
|
|
cmpl $(VEC_SIZE * 2), %edx
|
|
jbe L(last_2x_vec)
|
|
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x0_dec)
|
|
|
|
|
|
vpcmpb $0, (VEC_SIZE * -2)(%rax), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x1)
|
|
|
|
/* Used no matter what. */
|
|
vpcmpb $0, (VEC_SIZE * -3)(%rax), %VECMATCH, %k0
|
|
kmovd %k0, %ecx
|
|
|
|
cmpl $(VEC_SIZE * 3), %edx
|
|
ja L(last_vec)
|
|
|
|
lzcntl %ecx, %ecx
|
|
subq $(VEC_SIZE * 2 + 1), %rax
|
|
subq %rcx, %rax
|
|
cmpq %rax, %rdi
|
|
jbe L(ret_1)
|
|
xorl %eax, %eax
|
|
L(ret_1):
|
|
ret
|
|
|
|
.p2align 4,, 6
|
|
L(loop_end):
|
|
kmovd %k1, %ecx
|
|
notl %ecx
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x0_end)
|
|
|
|
vptestnmb %VEC(2), %VEC(2), %k0
|
|
kmovd %k0, %ecx
|
|
testl %ecx, %ecx
|
|
jnz L(ret_vec_x1_end)
|
|
|
|
kmovd %k2, %ecx
|
|
kmovd %k4, %esi
|
|
/* Combine last 2 VEC matches. If ecx (VEC3) is zero (no CHAR in VEC3)
|
|
then it won't affect the result in esi (VEC4). If ecx is non-zero
|
|
then CHAR in VEC3 and bsrq will use that position. */
|
|
salq $32, %rcx
|
|
orq %rsi, %rcx
|
|
bsrq %rcx, %rcx
|
|
addq %rcx, %rax
|
|
ret
|
|
.p2align 4,, 4
|
|
L(ret_vec_x0_end):
|
|
addq $(VEC_SIZE), %rax
|
|
L(ret_vec_x1_end):
|
|
bsrl %ecx, %ecx
|
|
leaq (VEC_SIZE * 2)(%rax, %rcx), %rax
|
|
ret
|
|
|
|
END(MEMRCHR)
|
|
#endif
|