glibc/math/s_clog10l.c
Joseph Myers 6f05bafeba Fix clog / clog10 sign of zero result in round-downward mode (bug 16789).
This patch fixes bug 16789, incorrect sign of (real part) zero result
from clog and clog10 in round-downward mode, arising from that real
part being computed as 0 - 0.  To ensure that an underflow exception
occurred, the code used an underflowing value (the next term in the
series for log1p) in arithmetic computing the real part of the result,
yielding the problematic 0 - 0 computation in some cases even when the
mathematical result would be small but positive.  The patch changes
this code to use the math_force_eval approach to ensuring that an
underflowing computation actually occurs.  Tests of clog and clog10
are enabled in all rounding modes.

Tested x86_64 and x86 and ulps updated accordingly.

	[BZ #16789]
	* math/s_clog.c (__clog): Use math_force_eval to ensure underflow
	instead of using underflowing value in computing result.
	* math/s_clog10.c (__clog10): Likewise.
	* math/s_clog10f.c (__clog10f): Likewise.
	* math/s_clog10l.c (__clog10l): Likewise.
	* math/s_clogf.c (__clogf): Likewise.
	* math/s_clogl.c (__clogl): Likewise.
	* math/libm-test.inc (clog_test): Use ALL_RM_TEST.
	(clog10_test): Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2014-04-02 13:10:19 +00:00

132 lines
3.9 KiB
C

/* Compute complex base 10 logarithm.
Copyright (C) 1997-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious underflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
/* log_10 (2). */
#define M_LOG10_2l 0.3010299956639811952137388947244930267682L
/* pi * log10 (e). */
#define M_PI_LOG10El 1.364376353841841347485783625431355770210L
__complex__ long double
__clog10l (__complex__ long double x)
{
__complex__ long double result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI_LOG10El : 0.0;
__imag__ result = __copysignl (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabsl (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x);
int scale = 0;
if (absx < absy)
{
long double t = absx;
absx = absy;
absy = t;
}
if (absx > LDBL_MAX / 2.0L)
{
scale = -1;
absx = __scalbnl (absx, scale);
absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L);
}
else if (absx < LDBL_MIN && absy < LDBL_MIN)
{
scale = LDBL_MANT_DIG;
absx = __scalbnl (absx, scale);
absy = __scalbnl (absy, scale);
}
if (absx == 1.0L && scale == 0)
{
long double absy2 = absy * absy;
if (absy2 <= LDBL_MIN * 2.0L * M_LN10l)
{
long double force_underflow = absy2 * absy2;
__real__ result = absy2 * (M_LOG10El / 2.0);
math_force_eval (force_underflow);
}
else
__real__ result = __log1pl (absy2) * (M_LOG10El / 2.0L);
}
else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0)
{
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
if (absy >= LDBL_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
}
else if (absx < 1.0L
&& absx >= 0.75L
&& absy < LDBL_EPSILON / 2.0L
&& scale == 0)
{
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
__real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
}
else if (absx < 1.0L && (absx >= 0.75L || absy >= 0.5L) && scale == 0)
{
long double d2m1 = __x2y2m1l (absx, absy);
__real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
}
else
{
long double d = __ieee754_hypotl (absx, absy);
__real__ result = __ieee754_log10l (d) - scale * M_LOG10_2l;
}
__imag__ result = M_LOG10El * __ieee754_atan2l (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nanl ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VALL;
else
__real__ result = __nanl ("");
}
return result;
}
weak_alias (__clog10l, clog10l)