mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-10 11:20:10 +00:00
75eff3fe90
This patch moves the AArch64 port to the main sysdeps hierarchy. The move is essentially: git mv ports/sysdeps/aarch64 sysdeps/aarch64 git mv ports/sysdeps/unix/sysv/linux/aarch64 sysdeps/unix/sysv/linux/aarch64 The README is updated and I've updated ChangeLog.aarch64 along the lines of the ARM move. The AArch64 build has been tested to confirm that there were no changes in objdump -dr output or the shared objects.
230 lines
5.6 KiB
ArmAsm
230 lines
5.6 KiB
ArmAsm
/* Copyright (C) 2012-2014 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Assumptions:
|
|
*
|
|
* ARMv8-a, AArch64
|
|
* Unaligned accesses
|
|
*
|
|
*/
|
|
|
|
#include <sysdep.h>
|
|
|
|
/* By default we assume that the DC instruction can be used to zero
|
|
data blocks more efficiently. In some circumstances this might be
|
|
unsafe, for example in an asymmetric multiprocessor environment with
|
|
different DC clear lengths (neither the upper nor lower lengths are
|
|
safe to use). The feature can be disabled by defining DONT_USE_DC.
|
|
|
|
If code may be run in a virtualized environment, then define
|
|
MAYBE_VIRT. This will cause the code to cache the system register
|
|
values rather than re-reading them each call. */
|
|
|
|
#define dstin x0
|
|
#define val w1
|
|
#define count x2
|
|
#define tmp1 x3
|
|
#define tmp1w w3
|
|
#define tmp2 x4
|
|
#define tmp2w w4
|
|
#define zva_len_x x5
|
|
#define zva_len w5
|
|
#define zva_bits_x x6
|
|
|
|
#define A_l x7
|
|
#define A_lw w7
|
|
#define dst x8
|
|
#define tmp3w w9
|
|
|
|
ENTRY_ALIGN (__memset, 6)
|
|
|
|
mov dst, dstin /* Preserve return value. */
|
|
ands A_lw, val, #255
|
|
#ifndef DONT_USE_DC
|
|
b.eq L(zero_mem)
|
|
#endif
|
|
orr A_lw, A_lw, A_lw, lsl #8
|
|
orr A_lw, A_lw, A_lw, lsl #16
|
|
orr A_l, A_l, A_l, lsl #32
|
|
L(tail_maybe_long):
|
|
cmp count, #64
|
|
b.ge L(not_short)
|
|
L(tail_maybe_tiny):
|
|
cmp count, #15
|
|
b.le L(tail15tiny)
|
|
L(tail63):
|
|
ands tmp1, count, #0x30
|
|
b.eq L(tail15)
|
|
add dst, dst, tmp1
|
|
cmp tmp1w, #0x20
|
|
b.eq 1f
|
|
b.lt 2f
|
|
stp A_l, A_l, [dst, #-48]
|
|
1:
|
|
stp A_l, A_l, [dst, #-32]
|
|
2:
|
|
stp A_l, A_l, [dst, #-16]
|
|
|
|
L(tail15):
|
|
and count, count, #15
|
|
add dst, dst, count
|
|
stp A_l, A_l, [dst, #-16] /* Repeat some/all of last store. */
|
|
RET
|
|
|
|
L(tail15tiny):
|
|
/* Set up to 15 bytes. Does not assume earlier memory
|
|
being set. */
|
|
tbz count, #3, 1f
|
|
str A_l, [dst], #8
|
|
1:
|
|
tbz count, #2, 1f
|
|
str A_lw, [dst], #4
|
|
1:
|
|
tbz count, #1, 1f
|
|
strh A_lw, [dst], #2
|
|
1:
|
|
tbz count, #0, 1f
|
|
strb A_lw, [dst]
|
|
1:
|
|
RET
|
|
|
|
/* Critical loop. Start at a new cache line boundary. Assuming
|
|
* 64 bytes per line, this ensures the entire loop is in one line. */
|
|
.p2align 6
|
|
L(not_short):
|
|
neg tmp2, dst
|
|
ands tmp2, tmp2, #15
|
|
b.eq 2f
|
|
/* Bring DST to 128-bit (16-byte) alignment. We know that there's
|
|
* more than that to set, so we simply store 16 bytes and advance by
|
|
* the amount required to reach alignment. */
|
|
sub count, count, tmp2
|
|
stp A_l, A_l, [dst]
|
|
add dst, dst, tmp2
|
|
/* There may be less than 63 bytes to go now. */
|
|
cmp count, #63
|
|
b.le L(tail63)
|
|
2:
|
|
sub dst, dst, #16 /* Pre-bias. */
|
|
sub count, count, #64
|
|
1:
|
|
stp A_l, A_l, [dst, #16]
|
|
stp A_l, A_l, [dst, #32]
|
|
stp A_l, A_l, [dst, #48]
|
|
stp A_l, A_l, [dst, #64]!
|
|
subs count, count, #64
|
|
b.ge 1b
|
|
tst count, #0x3f
|
|
add dst, dst, #16
|
|
b.ne L(tail63)
|
|
RET
|
|
|
|
#ifndef DONT_USE_DC
|
|
/* For zeroing memory, check to see if we can use the ZVA feature to
|
|
* zero entire 'cache' lines. */
|
|
L(zero_mem):
|
|
mov A_l, #0
|
|
cmp count, #63
|
|
b.le L(tail_maybe_tiny)
|
|
neg tmp2, dst
|
|
ands tmp2, tmp2, #15
|
|
b.eq 1f
|
|
sub count, count, tmp2
|
|
stp A_l, A_l, [dst]
|
|
add dst, dst, tmp2
|
|
cmp count, #63
|
|
b.le L(tail63)
|
|
1:
|
|
/* For zeroing small amounts of memory, it's not worth setting up
|
|
* the line-clear code. */
|
|
cmp count, #128
|
|
b.lt L(not_short)
|
|
#ifdef MAYBE_VIRT
|
|
/* For efficiency when virtualized, we cache the ZVA capability. */
|
|
adrp tmp2, L(cache_clear)
|
|
ldr zva_len, [tmp2, #:lo12:L(cache_clear)]
|
|
tbnz zva_len, #31, L(not_short)
|
|
cbnz zva_len, L(zero_by_line)
|
|
mrs tmp1, dczid_el0
|
|
tbz tmp1, #4, 1f
|
|
/* ZVA not available. Remember this for next time. */
|
|
mov zva_len, #~0
|
|
str zva_len, [tmp2, #:lo12:L(cache_clear)]
|
|
b L(not_short)
|
|
1:
|
|
mov tmp3w, #4
|
|
and zva_len, tmp1w, #15 /* Safety: other bits reserved. */
|
|
lsl zva_len, tmp3w, zva_len
|
|
str zva_len, [tmp2, #:lo12:L(cache_clear)]
|
|
#else
|
|
mrs tmp1, dczid_el0
|
|
tbnz tmp1, #4, L(not_short)
|
|
mov tmp3w, #4
|
|
and zva_len, tmp1w, #15 /* Safety: other bits reserved. */
|
|
lsl zva_len, tmp3w, zva_len
|
|
#endif
|
|
|
|
L(zero_by_line):
|
|
/* Compute how far we need to go to become suitably aligned. We're
|
|
* already at quad-word alignment. */
|
|
cmp count, zva_len_x
|
|
b.lt L(not_short) /* Not enough to reach alignment. */
|
|
sub zva_bits_x, zva_len_x, #1
|
|
neg tmp2, dst
|
|
ands tmp2, tmp2, zva_bits_x
|
|
b.eq 1f /* Already aligned. */
|
|
/* Not aligned, check that there's enough to copy after alignment. */
|
|
sub tmp1, count, tmp2
|
|
cmp tmp1, #64
|
|
ccmp tmp1, zva_len_x, #8, ge /* NZCV=0b1000 */
|
|
b.lt L(not_short)
|
|
/* We know that there's at least 64 bytes to zero and that it's safe
|
|
* to overrun by 64 bytes. */
|
|
mov count, tmp1
|
|
2:
|
|
stp A_l, A_l, [dst]
|
|
stp A_l, A_l, [dst, #16]
|
|
stp A_l, A_l, [dst, #32]
|
|
subs tmp2, tmp2, #64
|
|
stp A_l, A_l, [dst, #48]
|
|
add dst, dst, #64
|
|
b.ge 2b
|
|
/* We've overrun a bit, so adjust dst downwards. */
|
|
add dst, dst, tmp2
|
|
1:
|
|
sub count, count, zva_len_x
|
|
3:
|
|
dc zva, dst
|
|
add dst, dst, zva_len_x
|
|
subs count, count, zva_len_x
|
|
b.ge 3b
|
|
ands count, count, zva_bits_x
|
|
b.ne L(tail_maybe_long)
|
|
RET
|
|
#ifdef MAYBE_VIRT
|
|
.bss
|
|
.p2align 2
|
|
L(cache_clear):
|
|
.space 4
|
|
#endif
|
|
#endif /* DONT_USE_DC */
|
|
|
|
END (__memset)
|
|
weak_alias (__memset, memset)
|
|
libc_hidden_builtin_def (memset)
|