mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 04:50:07 +00:00
8114b95cef
Remove the 4 uses of atomic_and and atomic_or with atomic_fetch_and_acquire and atomic_fetch_or_acquire. This is preserves existing implied semantics, however relaxed MO on FUTEX_OWNER_DIED accesses may be correct. Passes regress on AArch64. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
662 lines
20 KiB
C
662 lines
20 KiB
C
/* Copyright (C) 2002-2022 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <sys/param.h>
|
|
#include <not-cancel.h>
|
|
#include "pthreadP.h"
|
|
#include <atomic.h>
|
|
#include <futex-internal.h>
|
|
#include <stap-probe.h>
|
|
#include <shlib-compat.h>
|
|
|
|
/* Some of the following definitions differ when pthread_mutex_cond_lock.c
|
|
includes this file. */
|
|
#ifndef LLL_MUTEX_LOCK
|
|
/* lll_lock with single-thread optimization. */
|
|
static inline void
|
|
lll_mutex_lock_optimized (pthread_mutex_t *mutex)
|
|
{
|
|
/* The single-threaded optimization is only valid for private
|
|
mutexes. For process-shared mutexes, the mutex could be in a
|
|
shared mapping, so synchronization with another process is needed
|
|
even without any threads. If the lock is already marked as
|
|
acquired, POSIX requires that pthread_mutex_lock deadlocks for
|
|
normal mutexes, so skip the optimization in that case as
|
|
well. */
|
|
int private = PTHREAD_MUTEX_PSHARED (mutex);
|
|
if (private == LLL_PRIVATE && SINGLE_THREAD_P && mutex->__data.__lock == 0)
|
|
mutex->__data.__lock = 1;
|
|
else
|
|
lll_lock (mutex->__data.__lock, private);
|
|
}
|
|
|
|
# define LLL_MUTEX_LOCK(mutex) \
|
|
lll_lock ((mutex)->__data.__lock, PTHREAD_MUTEX_PSHARED (mutex))
|
|
# define LLL_MUTEX_LOCK_OPTIMIZED(mutex) lll_mutex_lock_optimized (mutex)
|
|
# define LLL_MUTEX_TRYLOCK(mutex) \
|
|
lll_trylock ((mutex)->__data.__lock)
|
|
# define LLL_ROBUST_MUTEX_LOCK_MODIFIER 0
|
|
# define LLL_MUTEX_LOCK_ELISION(mutex) \
|
|
lll_lock_elision ((mutex)->__data.__lock, (mutex)->__data.__elision, \
|
|
PTHREAD_MUTEX_PSHARED (mutex))
|
|
# define LLL_MUTEX_TRYLOCK_ELISION(mutex) \
|
|
lll_trylock_elision((mutex)->__data.__lock, (mutex)->__data.__elision, \
|
|
PTHREAD_MUTEX_PSHARED (mutex))
|
|
# define PTHREAD_MUTEX_LOCK ___pthread_mutex_lock
|
|
# define PTHREAD_MUTEX_VERSIONS 1
|
|
#endif
|
|
|
|
#ifndef LLL_MUTEX_READ_LOCK
|
|
# define LLL_MUTEX_READ_LOCK(mutex) \
|
|
atomic_load_relaxed (&(mutex)->__data.__lock)
|
|
#endif
|
|
|
|
static int __pthread_mutex_lock_full (pthread_mutex_t *mutex)
|
|
__attribute_noinline__;
|
|
|
|
int
|
|
PTHREAD_MUTEX_LOCK (pthread_mutex_t *mutex)
|
|
{
|
|
/* See concurrency notes regarding mutex type which is loaded from __kind
|
|
in struct __pthread_mutex_s in sysdeps/nptl/bits/thread-shared-types.h. */
|
|
unsigned int type = PTHREAD_MUTEX_TYPE_ELISION (mutex);
|
|
|
|
LIBC_PROBE (mutex_entry, 1, mutex);
|
|
|
|
if (__builtin_expect (type & ~(PTHREAD_MUTEX_KIND_MASK_NP
|
|
| PTHREAD_MUTEX_ELISION_FLAGS_NP), 0))
|
|
return __pthread_mutex_lock_full (mutex);
|
|
|
|
if (__glibc_likely (type == PTHREAD_MUTEX_TIMED_NP))
|
|
{
|
|
FORCE_ELISION (mutex, goto elision);
|
|
simple:
|
|
/* Normal mutex. */
|
|
LLL_MUTEX_LOCK_OPTIMIZED (mutex);
|
|
assert (mutex->__data.__owner == 0);
|
|
}
|
|
#if ENABLE_ELISION_SUPPORT
|
|
else if (__glibc_likely (type == PTHREAD_MUTEX_TIMED_ELISION_NP))
|
|
{
|
|
elision: __attribute__((unused))
|
|
/* This case can never happen on a system without elision,
|
|
as the mutex type initialization functions will not
|
|
allow to set the elision flags. */
|
|
/* Don't record owner or users for elision case. This is a
|
|
tail call. */
|
|
return LLL_MUTEX_LOCK_ELISION (mutex);
|
|
}
|
|
#endif
|
|
else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex)
|
|
== PTHREAD_MUTEX_RECURSIVE_NP, 1))
|
|
{
|
|
/* Recursive mutex. */
|
|
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
|
|
|
|
/* Check whether we already hold the mutex. */
|
|
if (mutex->__data.__owner == id)
|
|
{
|
|
/* Just bump the counter. */
|
|
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
|
|
/* Overflow of the counter. */
|
|
return EAGAIN;
|
|
|
|
++mutex->__data.__count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* We have to get the mutex. */
|
|
LLL_MUTEX_LOCK_OPTIMIZED (mutex);
|
|
|
|
assert (mutex->__data.__owner == 0);
|
|
mutex->__data.__count = 1;
|
|
}
|
|
else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex)
|
|
== PTHREAD_MUTEX_ADAPTIVE_NP, 1))
|
|
{
|
|
if (LLL_MUTEX_TRYLOCK (mutex) != 0)
|
|
{
|
|
int cnt = 0;
|
|
int max_cnt = MIN (max_adaptive_count (),
|
|
mutex->__data.__spins * 2 + 10);
|
|
int spin_count, exp_backoff = 1;
|
|
unsigned int jitter = get_jitter ();
|
|
do
|
|
{
|
|
/* In each loop, spin count is exponential backoff plus
|
|
random jitter, random range is [0, exp_backoff-1]. */
|
|
spin_count = exp_backoff + (jitter & (exp_backoff - 1));
|
|
cnt += spin_count;
|
|
if (cnt >= max_cnt)
|
|
{
|
|
/* If cnt exceeds max spin count, just go to wait
|
|
queue. */
|
|
LLL_MUTEX_LOCK (mutex);
|
|
break;
|
|
}
|
|
do
|
|
atomic_spin_nop ();
|
|
while (--spin_count > 0);
|
|
/* Prepare for next loop. */
|
|
exp_backoff = get_next_backoff (exp_backoff);
|
|
}
|
|
while (LLL_MUTEX_READ_LOCK (mutex) != 0
|
|
|| LLL_MUTEX_TRYLOCK (mutex) != 0);
|
|
|
|
mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
|
|
}
|
|
assert (mutex->__data.__owner == 0);
|
|
}
|
|
else
|
|
{
|
|
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
|
|
assert (PTHREAD_MUTEX_TYPE (mutex) == PTHREAD_MUTEX_ERRORCHECK_NP);
|
|
/* Check whether we already hold the mutex. */
|
|
if (__glibc_unlikely (mutex->__data.__owner == id))
|
|
return EDEADLK;
|
|
goto simple;
|
|
}
|
|
|
|
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
|
|
|
|
/* Record the ownership. */
|
|
mutex->__data.__owner = id;
|
|
#ifndef NO_INCR
|
|
++mutex->__data.__nusers;
|
|
#endif
|
|
|
|
LIBC_PROBE (mutex_acquired, 1, mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
__pthread_mutex_lock_full (pthread_mutex_t *mutex)
|
|
{
|
|
int oldval;
|
|
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
|
|
|
|
switch (PTHREAD_MUTEX_TYPE (mutex))
|
|
{
|
|
case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
|
|
case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
|
|
case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
|
|
case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
|
|
&mutex->__data.__list.__next);
|
|
/* We need to set op_pending before starting the operation. Also
|
|
see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
|
|
oldval = mutex->__data.__lock;
|
|
/* This is set to FUTEX_WAITERS iff we might have shared the
|
|
FUTEX_WAITERS flag with other threads, and therefore need to keep it
|
|
set to avoid lost wake-ups. We have the same requirement in the
|
|
simple mutex algorithm.
|
|
We start with value zero for a normal mutex, and FUTEX_WAITERS if we
|
|
are building the special case mutexes for use from within condition
|
|
variables. */
|
|
unsigned int assume_other_futex_waiters = LLL_ROBUST_MUTEX_LOCK_MODIFIER;
|
|
while (1)
|
|
{
|
|
/* Try to acquire the lock through a CAS from 0 (not acquired) to
|
|
our TID | assume_other_futex_waiters. */
|
|
if (__glibc_likely (oldval == 0))
|
|
{
|
|
oldval
|
|
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
id | assume_other_futex_waiters, 0);
|
|
if (__glibc_likely (oldval == 0))
|
|
break;
|
|
}
|
|
|
|
if ((oldval & FUTEX_OWNER_DIED) != 0)
|
|
{
|
|
/* The previous owner died. Try locking the mutex. */
|
|
int newval = id;
|
|
#ifdef NO_INCR
|
|
/* We are not taking assume_other_futex_waiters into accoount
|
|
here simply because we'll set FUTEX_WAITERS anyway. */
|
|
newval |= FUTEX_WAITERS;
|
|
#else
|
|
newval |= (oldval & FUTEX_WAITERS) | assume_other_futex_waiters;
|
|
#endif
|
|
|
|
newval
|
|
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
newval, oldval);
|
|
|
|
if (newval != oldval)
|
|
{
|
|
oldval = newval;
|
|
continue;
|
|
}
|
|
|
|
/* We got the mutex. */
|
|
mutex->__data.__count = 1;
|
|
/* But it is inconsistent unless marked otherwise. */
|
|
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
|
|
|
|
/* We must not enqueue the mutex before we have acquired it.
|
|
Also see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
ENQUEUE_MUTEX (mutex);
|
|
/* We need to clear op_pending after we enqueue the mutex. */
|
|
__asm ("" ::: "memory");
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
|
|
/* Note that we deliberately exit here. If we fall
|
|
through to the end of the function __nusers would be
|
|
incremented which is not correct because the old
|
|
owner has to be discounted. If we are not supposed
|
|
to increment __nusers we actually have to decrement
|
|
it here. */
|
|
#ifdef NO_INCR
|
|
--mutex->__data.__nusers;
|
|
#endif
|
|
|
|
return EOWNERDEAD;
|
|
}
|
|
|
|
/* Check whether we already hold the mutex. */
|
|
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
|
|
{
|
|
int kind = PTHREAD_MUTEX_TYPE (mutex);
|
|
if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)
|
|
{
|
|
/* We do not need to ensure ordering wrt another memory
|
|
access. Also see comments at ENQUEUE_MUTEX. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
|
|
NULL);
|
|
return EDEADLK;
|
|
}
|
|
|
|
if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)
|
|
{
|
|
/* We do not need to ensure ordering wrt another memory
|
|
access. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
|
|
NULL);
|
|
|
|
/* Just bump the counter. */
|
|
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
|
|
/* Overflow of the counter. */
|
|
return EAGAIN;
|
|
|
|
++mutex->__data.__count;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* We cannot acquire the mutex nor has its owner died. Thus, try
|
|
to block using futexes. Set FUTEX_WAITERS if necessary so that
|
|
other threads are aware that there are potentially threads
|
|
blocked on the futex. Restart if oldval changed in the
|
|
meantime. */
|
|
if ((oldval & FUTEX_WAITERS) == 0)
|
|
{
|
|
int val = atomic_compare_and_exchange_val_acq
|
|
(&mutex->__data.__lock, oldval | FUTEX_WAITERS, oldval);
|
|
if (val != oldval)
|
|
{
|
|
oldval = val;
|
|
continue;
|
|
}
|
|
oldval |= FUTEX_WAITERS;
|
|
}
|
|
|
|
/* It is now possible that we share the FUTEX_WAITERS flag with
|
|
another thread; therefore, update assume_other_futex_waiters so
|
|
that we do not forget about this when handling other cases
|
|
above and thus do not cause lost wake-ups. */
|
|
assume_other_futex_waiters |= FUTEX_WAITERS;
|
|
|
|
/* Block using the futex and reload current lock value. */
|
|
futex_wait ((unsigned int *) &mutex->__data.__lock, oldval,
|
|
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
|
|
oldval = mutex->__data.__lock;
|
|
}
|
|
|
|
/* We have acquired the mutex; check if it is still consistent. */
|
|
if (__builtin_expect (mutex->__data.__owner
|
|
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
|
|
{
|
|
/* This mutex is now not recoverable. */
|
|
mutex->__data.__count = 0;
|
|
int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex);
|
|
lll_unlock (mutex->__data.__lock, private);
|
|
/* FIXME This violates the mutex destruction requirements. See
|
|
__pthread_mutex_unlock_full. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
return ENOTRECOVERABLE;
|
|
}
|
|
|
|
mutex->__data.__count = 1;
|
|
/* We must not enqueue the mutex before we have acquired it.
|
|
Also see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
ENQUEUE_MUTEX (mutex);
|
|
/* We need to clear op_pending after we enqueue the mutex. */
|
|
__asm ("" ::: "memory");
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
break;
|
|
|
|
/* The PI support requires the Linux futex system call. If that's not
|
|
available, pthread_mutex_init should never have allowed the type to
|
|
be set. So it will get the default case for an invalid type. */
|
|
#ifdef __NR_futex
|
|
case PTHREAD_MUTEX_PI_RECURSIVE_NP:
|
|
case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
|
|
case PTHREAD_MUTEX_PI_NORMAL_NP:
|
|
case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
|
|
case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
|
|
case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
|
|
case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
|
|
case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
|
|
{
|
|
int kind, robust;
|
|
{
|
|
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
|
|
in sysdeps/nptl/bits/thread-shared-types.h. */
|
|
int mutex_kind = atomic_load_relaxed (&(mutex->__data.__kind));
|
|
kind = mutex_kind & PTHREAD_MUTEX_KIND_MASK_NP;
|
|
robust = mutex_kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;
|
|
}
|
|
|
|
if (robust)
|
|
{
|
|
/* Note: robust PI futexes are signaled by setting bit 0. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
|
|
(void *) (((uintptr_t) &mutex->__data.__list.__next)
|
|
| 1));
|
|
/* We need to set op_pending before starting the operation. Also
|
|
see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
}
|
|
|
|
oldval = mutex->__data.__lock;
|
|
|
|
/* Check whether we already hold the mutex. */
|
|
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
|
|
{
|
|
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
|
|
{
|
|
/* We do not need to ensure ordering wrt another memory
|
|
access. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
return EDEADLK;
|
|
}
|
|
|
|
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
|
|
{
|
|
/* We do not need to ensure ordering wrt another memory
|
|
access. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
|
|
/* Just bump the counter. */
|
|
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
|
|
/* Overflow of the counter. */
|
|
return EAGAIN;
|
|
|
|
++mutex->__data.__count;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int newval = id;
|
|
# ifdef NO_INCR
|
|
newval |= FUTEX_WAITERS;
|
|
# endif
|
|
oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
newval, 0);
|
|
|
|
if (oldval != 0)
|
|
{
|
|
/* The mutex is locked. The kernel will now take care of
|
|
everything. */
|
|
int private = (robust
|
|
? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)
|
|
: PTHREAD_MUTEX_PSHARED (mutex));
|
|
int e = __futex_lock_pi64 (&mutex->__data.__lock, 0 /* ununsed */,
|
|
NULL, private);
|
|
if (e == ESRCH || e == EDEADLK)
|
|
{
|
|
assert (e != EDEADLK
|
|
|| (kind != PTHREAD_MUTEX_ERRORCHECK_NP
|
|
&& kind != PTHREAD_MUTEX_RECURSIVE_NP));
|
|
/* ESRCH can happen only for non-robust PI mutexes where
|
|
the owner of the lock died. */
|
|
assert (e != ESRCH || !robust);
|
|
|
|
/* Delay the thread indefinitely. */
|
|
while (1)
|
|
__futex_abstimed_wait64 (&(unsigned int){0}, 0,
|
|
0 /* ignored */, NULL, private);
|
|
}
|
|
|
|
oldval = mutex->__data.__lock;
|
|
|
|
assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);
|
|
}
|
|
|
|
if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED))
|
|
{
|
|
atomic_fetch_and_acquire (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);
|
|
|
|
/* We got the mutex. */
|
|
mutex->__data.__count = 1;
|
|
/* But it is inconsistent unless marked otherwise. */
|
|
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
|
|
|
|
/* We must not enqueue the mutex before we have acquired it.
|
|
Also see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
ENQUEUE_MUTEX_PI (mutex);
|
|
/* We need to clear op_pending after we enqueue the mutex. */
|
|
__asm ("" ::: "memory");
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
|
|
/* Note that we deliberately exit here. If we fall
|
|
through to the end of the function __nusers would be
|
|
incremented which is not correct because the old owner
|
|
has to be discounted. If we are not supposed to
|
|
increment __nusers we actually have to decrement it here. */
|
|
# ifdef NO_INCR
|
|
--mutex->__data.__nusers;
|
|
# endif
|
|
|
|
return EOWNERDEAD;
|
|
}
|
|
|
|
if (robust
|
|
&& __builtin_expect (mutex->__data.__owner
|
|
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
|
|
{
|
|
/* This mutex is now not recoverable. */
|
|
mutex->__data.__count = 0;
|
|
|
|
futex_unlock_pi ((unsigned int *) &mutex->__data.__lock,
|
|
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
|
|
|
|
/* To the kernel, this will be visible after the kernel has
|
|
acquired the mutex in the syscall. */
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
return ENOTRECOVERABLE;
|
|
}
|
|
|
|
mutex->__data.__count = 1;
|
|
if (robust)
|
|
{
|
|
/* We must not enqueue the mutex before we have acquired it.
|
|
Also see comments at ENQUEUE_MUTEX. */
|
|
__asm ("" ::: "memory");
|
|
ENQUEUE_MUTEX_PI (mutex);
|
|
/* We need to clear op_pending after we enqueue the mutex. */
|
|
__asm ("" ::: "memory");
|
|
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
|
|
}
|
|
}
|
|
break;
|
|
#endif /* __NR_futex. */
|
|
|
|
case PTHREAD_MUTEX_PP_RECURSIVE_NP:
|
|
case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
|
|
case PTHREAD_MUTEX_PP_NORMAL_NP:
|
|
case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
|
|
{
|
|
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
|
|
in sysdeps/nptl/bits/thread-shared-types.h. */
|
|
int kind = atomic_load_relaxed (&(mutex->__data.__kind))
|
|
& PTHREAD_MUTEX_KIND_MASK_NP;
|
|
|
|
oldval = mutex->__data.__lock;
|
|
|
|
/* Check whether we already hold the mutex. */
|
|
if (mutex->__data.__owner == id)
|
|
{
|
|
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
|
|
return EDEADLK;
|
|
|
|
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
|
|
{
|
|
/* Just bump the counter. */
|
|
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
|
|
/* Overflow of the counter. */
|
|
return EAGAIN;
|
|
|
|
++mutex->__data.__count;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int oldprio = -1, ceilval;
|
|
do
|
|
{
|
|
int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)
|
|
>> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
|
|
|
|
if (__pthread_current_priority () > ceiling)
|
|
{
|
|
if (oldprio != -1)
|
|
__pthread_tpp_change_priority (oldprio, -1);
|
|
return EINVAL;
|
|
}
|
|
|
|
int retval = __pthread_tpp_change_priority (oldprio, ceiling);
|
|
if (retval)
|
|
return retval;
|
|
|
|
ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
|
|
oldprio = ceiling;
|
|
|
|
oldval
|
|
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
#ifdef NO_INCR
|
|
ceilval | 2,
|
|
#else
|
|
ceilval | 1,
|
|
#endif
|
|
ceilval);
|
|
|
|
if (oldval == ceilval)
|
|
break;
|
|
|
|
do
|
|
{
|
|
oldval
|
|
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
ceilval | 2,
|
|
ceilval | 1);
|
|
|
|
if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)
|
|
break;
|
|
|
|
if (oldval != ceilval)
|
|
futex_wait ((unsigned int * ) &mutex->__data.__lock,
|
|
ceilval | 2,
|
|
PTHREAD_MUTEX_PSHARED (mutex));
|
|
}
|
|
while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
|
|
ceilval | 2, ceilval)
|
|
!= ceilval);
|
|
}
|
|
while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);
|
|
|
|
assert (mutex->__data.__owner == 0);
|
|
mutex->__data.__count = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Correct code cannot set any other type. */
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Record the ownership. */
|
|
mutex->__data.__owner = id;
|
|
#ifndef NO_INCR
|
|
++mutex->__data.__nusers;
|
|
#endif
|
|
|
|
LIBC_PROBE (mutex_acquired, 1, mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if PTHREAD_MUTEX_VERSIONS
|
|
libc_hidden_ver (___pthread_mutex_lock, __pthread_mutex_lock)
|
|
# ifndef SHARED
|
|
strong_alias (___pthread_mutex_lock, __pthread_mutex_lock)
|
|
# endif
|
|
versioned_symbol (libpthread, ___pthread_mutex_lock, pthread_mutex_lock,
|
|
GLIBC_2_0);
|
|
|
|
# if OTHER_SHLIB_COMPAT (libpthread, GLIBC_2_0, GLIBC_2_34)
|
|
compat_symbol (libpthread, ___pthread_mutex_lock, __pthread_mutex_lock,
|
|
GLIBC_2_0);
|
|
# endif
|
|
#endif /* PTHREAD_MUTEX_VERSIONS */
|
|
|
|
|
|
#ifdef NO_INCR
|
|
void
|
|
__pthread_mutex_cond_lock_adjust (pthread_mutex_t *mutex)
|
|
{
|
|
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
|
|
in sysdeps/nptl/bits/thread-shared-types.h. */
|
|
int mutex_kind = atomic_load_relaxed (&(mutex->__data.__kind));
|
|
assert ((mutex_kind & PTHREAD_MUTEX_PRIO_INHERIT_NP) != 0);
|
|
assert ((mutex_kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP) == 0);
|
|
assert ((mutex_kind & PTHREAD_MUTEX_PSHARED_BIT) == 0);
|
|
|
|
/* Record the ownership. */
|
|
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
|
|
mutex->__data.__owner = id;
|
|
|
|
if (mutex_kind == PTHREAD_MUTEX_PI_RECURSIVE_NP)
|
|
++mutex->__data.__count;
|
|
}
|
|
#endif
|