glibc/sysdeps/ieee754/ldbl-128ibm/s_fmal.c
Joseph Myers 4b6574a6f6 Redirect fma calls to __fma in libm
include/math.h has a mechanism to redirect internal calls to various
libm functions, that can often be inlined by the compiler, to call
non-exported __* names for those functions in the case when the calls
aren't inlined, with the redirection being disabled when
NO_MATH_REDIRECT.  Add fma to the functions to which this mechanism is
applied.

At present, libm-internal fma calls (generally to __builtin_fma*
functions) are only done when it's known the call will be inlined,
with alternative code not relying on an fma operation being used in
the caller otherwise.  This patch is in preparation for adding the TS
18661 / C2X narrowing fma functions to glibc; it will be natural for
the narrowing function implementations to call the underlying fma
functions unconditionally, with this either being inlined or resulting
in an __fma* call.  (Using two levels of round-to-odd computation like
that, in the case where there isn't an fma hardware instruction, isn't
optimal but is certainly a lot simpler for the initial implementation
than writing different narrowing fma implementations for all the
various pairs of formats.)

Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by the patch (using
<https://sourceware.org/pipermail/libc-alpha/2021-September/130991.html>
to fix installed library stripping in build-many-glibcs.py).  Also
tested for x86_64.
2021-09-15 22:57:35 +00:00

261 lines
7.0 KiB
C

/* Compute x * y + z as ternary operation.
Copyright (C) 2011-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#define NO_MATH_REDIRECT
#include <fenv.h>
#include <float.h>
#include <math.h>
#include <math-barriers.h>
#include <math_private.h>
#include <fenv_private.h>
#include <math-underflow.h>
#include <math_ldbl_opt.h>
#include <mul_split.h>
#include <stdlib.h>
/* Calculate X + Y exactly and store the result in *HI + *LO. It is
given that |X| >= |Y| and the values are small enough that no
overflow occurs. */
static void
add_split (double *hi, double *lo, double x, double y)
{
/* Apply Dekker's algorithm. */
*hi = x + y;
*lo = (x - *hi) + y;
}
/* Value with extended range, used in intermediate computations. */
typedef struct
{
/* Value in [0.5, 1), as from frexp, or 0. */
double val;
/* Exponent of power of 2 it is multiplied by, or 0 for zero. */
int exp;
} ext_val;
/* Store D as an ext_val value. */
static void
store_ext_val (ext_val *v, double d)
{
v->val = __frexp (d, &v->exp);
}
/* Store X * Y as ext_val values *V0 and *V1. */
static void
mul_ext_val (ext_val *v0, ext_val *v1, double x, double y)
{
int xexp, yexp;
x = __frexp (x, &xexp);
y = __frexp (y, &yexp);
double hi, lo;
mul_split (&hi, &lo, x, y);
store_ext_val (v0, hi);
if (hi != 0)
v0->exp += xexp + yexp;
store_ext_val (v1, lo);
if (lo != 0)
v1->exp += xexp + yexp;
}
/* Compare absolute values of ext_val values pointed to by P and Q for
qsort. */
static int
compare (const void *p, const void *q)
{
const ext_val *pe = p;
const ext_val *qe = q;
if (pe->val == 0)
return qe->val == 0 ? 0 : -1;
else if (qe->val == 0)
return 1;
else if (pe->exp < qe->exp)
return -1;
else if (pe->exp > qe->exp)
return 1;
else
{
double pd = fabs (pe->val);
double qd = fabs (qe->val);
if (pd < qd)
return -1;
else if (pd == qd)
return 0;
else
return 1;
}
}
/* Calculate *X + *Y exactly, storing the high part in *X (rounded to
nearest) and the low part in *Y. It is given that |X| >= |Y|. */
static void
add_split_ext (ext_val *x, ext_val *y)
{
int xexp = x->exp, yexp = y->exp;
if (y->val == 0 || xexp - yexp > 53)
return;
double hi = x->val;
double lo = __scalbn (y->val, yexp - xexp);
add_split (&hi, &lo, hi, lo);
store_ext_val (x, hi);
if (hi != 0)
x->exp += xexp;
store_ext_val (y, lo);
if (lo != 0)
y->exp += xexp;
}
long double
__fmal (long double x, long double y, long double z)
{
double xhi, xlo, yhi, ylo, zhi, zlo;
int64_t hx, hy, hz;
int xexp, yexp, zexp;
double scale_val;
int scale_exp;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS64 (hx, xhi);
xexp = (hx & 0x7ff0000000000000LL) >> 52;
ldbl_unpack (y, &yhi, &ylo);
EXTRACT_WORDS64 (hy, yhi);
yexp = (hy & 0x7ff0000000000000LL) >> 52;
ldbl_unpack (z, &zhi, &zlo);
EXTRACT_WORDS64 (hz, zhi);
zexp = (hz & 0x7ff0000000000000LL) >> 52;
/* If z is Inf or NaN, but x and y are finite, avoid any exceptions
from computing x * y. */
if (zexp == 0x7ff && xexp != 0x7ff && yexp != 0x7ff)
return (z + x) + y;
/* If z is zero and x are y are nonzero, compute the result as x * y
to avoid the wrong sign of a zero result if x * y underflows to
0. */
if (z == 0 && x != 0 && y != 0)
return x * y;
/* If x or y or z is Inf/NaN, or if x * y is zero, compute as x * y
+ z. */
if (xexp == 0x7ff || yexp == 0x7ff || zexp == 0x7ff
|| x == 0 || y == 0)
return (x * y) + z;
{
SET_RESTORE_ROUND (FE_TONEAREST);
ext_val vals[10];
store_ext_val (&vals[0], zhi);
store_ext_val (&vals[1], zlo);
mul_ext_val (&vals[2], &vals[3], xhi, yhi);
mul_ext_val (&vals[4], &vals[5], xhi, ylo);
mul_ext_val (&vals[6], &vals[7], xlo, yhi);
mul_ext_val (&vals[8], &vals[9], xlo, ylo);
qsort (vals, 10, sizeof (ext_val), compare);
/* Add up the values so that each element of VALS has absolute
value at most equal to the last set bit of the next nonzero
element. */
for (size_t i = 0; i <= 8; i++)
{
add_split_ext (&vals[i + 1], &vals[i]);
qsort (vals + i + 1, 9 - i, sizeof (ext_val), compare);
}
/* Add up the values in the other direction, so that each element
of VALS has absolute value less than 5ulp of the next
value. */
size_t dstpos = 9;
for (size_t i = 1; i <= 9; i++)
{
if (vals[dstpos].val == 0)
{
vals[dstpos] = vals[9 - i];
vals[9 - i].val = 0;
vals[9 - i].exp = 0;
}
else
{
add_split_ext (&vals[dstpos], &vals[9 - i]);
if (vals[9 - i].val != 0)
{
if (9 - i < dstpos - 1)
{
vals[dstpos - 1] = vals[9 - i];
vals[9 - i].val = 0;
vals[9 - i].exp = 0;
}
dstpos--;
}
}
}
/* If the result is an exact zero, it results from adding two
values with opposite signs; recompute in the original rounding
mode. */
if (vals[9].val == 0)
goto zero_out;
/* Adding the top three values will now give a result as accurate
as the underlying long double arithmetic. */
add_split_ext (&vals[9], &vals[8]);
if (compare (&vals[8], &vals[7]) < 0)
{
ext_val tmp = vals[7];
vals[7] = vals[8];
vals[8] = tmp;
}
add_split_ext (&vals[8], &vals[7]);
add_split_ext (&vals[9], &vals[8]);
if (vals[9].exp > DBL_MAX_EXP || vals[9].exp < DBL_MIN_EXP)
{
/* Overflow or underflow, with the result depending on the
original rounding mode, but not on the low part computed
here. */
scale_val = vals[9].val;
scale_exp = vals[9].exp;
goto scale_out;
}
double hi = __scalbn (vals[9].val, vals[9].exp);
double lo = __scalbn (vals[8].val, vals[8].exp);
/* It is possible that the low part became subnormal and was
rounded so that the result is no longer canonical. */
ldbl_canonicalize (&hi, &lo);
long double ret = ldbl_pack (hi, lo);
math_check_force_underflow (ret);
return ret;
}
scale_out:
scale_val = math_opt_barrier (scale_val);
scale_val = __scalbn (scale_val, scale_exp);
if (fabs (scale_val) == DBL_MAX)
return copysignl (LDBL_MAX, scale_val);
math_check_force_underflow (scale_val);
return scale_val;
zero_out:;
double zero = 0.0;
zero = math_opt_barrier (zero);
return zero - zero;
}
#if IS_IN (libm)
long_double_symbol (libm, __fmal, fmal);
#else
long_double_symbol (libc, __fmal, fmal);
#endif