mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-07 10:00:07 +00:00
88283451b2
Various implementations of frexp functions return sNaN for sNaN input. This patch fixes them to add such arguments to themselves so that qNaN is returned. Tested for x86_64, x86, mips64 and powerpc. [BZ #20250] * sysdeps/i386/fpu/s_frexpl.S (__frexpl): Add non-finite input to itself. * sysdeps/ieee754/dbl-64/s_frexp.c (__frexp): Add non-finite or zero input to itself. * sysdeps/ieee754/dbl-64/wordsize-64/s_frexp.c (__frexp): Likewise. * sysdeps/ieee754/flt-32/s_frexpf.c (__frexpf): Likewise. * sysdeps/ieee754/ldbl-128/s_frexpl.c (__frexpl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise. * sysdeps/ieee754/ldbl-96/s_frexpl.c (__frexpl): Likewise. * math/libm-test.inc (frexp_test_data): Add sNaN tests.
149 lines
3.6 KiB
C
149 lines
3.6 KiB
C
/* s_frexpl.c -- long double version of s_frexp.c.
|
|
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
|
static char rcsid[] = "$NetBSD: $";
|
|
#endif
|
|
|
|
/*
|
|
* for non-zero x
|
|
* x = frexpl(arg,&exp);
|
|
* return a long double fp quantity x such that 0.5 <= |x| <1.0
|
|
* and the corresponding binary exponent "exp". That is
|
|
* arg = x*2^exp.
|
|
* If arg is inf, 0.0, or NaN, then frexpl(arg,&exp) returns arg
|
|
* with *exp=0.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <math_ldbl_opt.h>
|
|
|
|
long double __frexpl(long double x, int *eptr)
|
|
{
|
|
uint64_t hx, lx, ix, ixl;
|
|
int64_t explo, expon;
|
|
double xhi, xlo;
|
|
|
|
ldbl_unpack (x, &xhi, &xlo);
|
|
EXTRACT_WORDS64 (hx, xhi);
|
|
EXTRACT_WORDS64 (lx, xlo);
|
|
ixl = 0x7fffffffffffffffULL & lx;
|
|
ix = 0x7fffffffffffffffULL & hx;
|
|
expon = 0;
|
|
if (ix >= 0x7ff0000000000000ULL || ix == 0)
|
|
{
|
|
/* 0,inf,nan. */
|
|
*eptr = expon;
|
|
return x + x;
|
|
}
|
|
expon = ix >> 52;
|
|
if (expon == 0)
|
|
{
|
|
/* Denormal high double, the low double must be 0.0. */
|
|
int cnt;
|
|
|
|
/* Normalize. */
|
|
if (sizeof (ix) == sizeof (long))
|
|
cnt = __builtin_clzl (ix);
|
|
else if ((ix >> 32) != 0)
|
|
cnt = __builtin_clzl ((long) (ix >> 32));
|
|
else
|
|
cnt = __builtin_clzl ((long) ix) + 32;
|
|
cnt = cnt - 12;
|
|
expon -= cnt;
|
|
ix <<= cnt + 1;
|
|
}
|
|
expon -= 1022;
|
|
ix &= 0x000fffffffffffffULL;
|
|
hx &= 0x8000000000000000ULL;
|
|
hx |= (1022LL << 52) | ix;
|
|
|
|
if (ixl != 0)
|
|
{
|
|
/* If the high double is an exact power of two and the low
|
|
double has the opposite sign, then the exponent calculated
|
|
from the high double is one too big. */
|
|
if (ix == 0
|
|
&& (int64_t) (hx ^ lx) < 0)
|
|
{
|
|
hx += 1LL << 52;
|
|
expon -= 1;
|
|
}
|
|
|
|
explo = ixl >> 52;
|
|
if (explo == 0)
|
|
{
|
|
/* The low double started out as a denormal. Normalize its
|
|
mantissa and adjust the exponent. */
|
|
int cnt;
|
|
|
|
if (sizeof (ixl) == sizeof (long))
|
|
cnt = __builtin_clzl (ixl);
|
|
else if ((ixl >> 32) != 0)
|
|
cnt = __builtin_clzl ((long) (ixl >> 32));
|
|
else
|
|
cnt = __builtin_clzl ((long) ixl) + 32;
|
|
cnt = cnt - 12;
|
|
explo -= cnt;
|
|
ixl <<= cnt + 1;
|
|
}
|
|
|
|
/* With variable precision we can't assume much about the
|
|
magnitude of the returned low double. It may even be a
|
|
denormal. */
|
|
explo -= expon;
|
|
ixl &= 0x000fffffffffffffULL;
|
|
lx &= 0x8000000000000000ULL;
|
|
if (explo <= 0)
|
|
{
|
|
/* Handle denormal low double. */
|
|
if (explo > -52)
|
|
{
|
|
ixl |= 1LL << 52;
|
|
ixl >>= 1 - explo;
|
|
}
|
|
else
|
|
{
|
|
ixl = 0;
|
|
lx = 0;
|
|
if ((hx & 0x7ff0000000000000ULL) == (1023LL << 52))
|
|
{
|
|
/* Oops, the adjustment we made above for values a
|
|
little smaller than powers of two turned out to
|
|
be wrong since the returned low double will be
|
|
zero. This can happen if the input was
|
|
something weird like 0x1p1000 - 0x1p-1000. */
|
|
hx -= 1LL << 52;
|
|
expon += 1;
|
|
}
|
|
}
|
|
explo = 0;
|
|
}
|
|
lx |= (explo << 52) | ixl;
|
|
}
|
|
|
|
INSERT_WORDS64 (xhi, hx);
|
|
INSERT_WORDS64 (xlo, lx);
|
|
x = ldbl_pack (xhi, xlo);
|
|
*eptr = expon;
|
|
return x;
|
|
}
|
|
#if IS_IN (libm)
|
|
long_double_symbol (libm, __frexpl, frexpl);
|
|
#else
|
|
long_double_symbol (libc, __frexpl, frexpl);
|
|
#endif
|