mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 22:10:13 +00:00
765714cafc
http://sourceware.org/ml/libc-alpha/2013-08/msg00083.html Further replacement of ieee854 macros and unions. These files also have some optimisations for comparison against 0.0L, infinity and nan. Since the ABI specifies that the high double of an IBM long double pair is the value rounded to double, a high double of 0.0 means the low double must also be 0.0. The ABI also says that infinity and nan are encoded in the high double, with the low double unspecified. This means that tests for 0.0L, +/-Infinity and +/-NaN need only check the high double. * sysdeps/ieee754/ldbl-128ibm/e_atan2l.c (__ieee754_atan2l): Rewrite all uses of ieee854 long double macros and unions. Simplify tests for long doubles that are fully specified by the high double. * sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_ilogbl.c (__ieee754_ilogbl): Likewise. Remove dead code too. * sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise. (__ieee754_ynl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_log10l.c (__ieee754_log10l): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise. Remove dead code too. * sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_isinf_nsl.c (__isinf_nsl): Likewise. Simplify. * sysdeps/ieee754/ldbl-128ibm/s_isinfl.c (___isinfl): Likewise. Simplify. * sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_modfl.c (__modfl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Likewise. Comment on variable precision. * sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_scalblnl.c (__scalblnl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (__scalbnl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Adjust tan_towardzero ulps.
152 lines
4.5 KiB
C
152 lines
4.5 KiB
C
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/*
|
|
Long double expansions are
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
|
and are incorporated herein by permission of the author. The author
|
|
reserves the right to distribute this material elsewhere under different
|
|
copying permissions. These modifications are distributed here under
|
|
the following terms:
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* __kernel_tanl( x, y, k )
|
|
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
* Input y is the tail of x.
|
|
* Input k indicates whether tan (if k=1) or
|
|
* -1/tan (if k= -1) is returned.
|
|
*
|
|
* Algorithm
|
|
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
|
* 2. if x < 2^-57, return x with inexact if x!=0.
|
|
* 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
|
|
* on [0,0.67433].
|
|
*
|
|
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
|
* ~ tan(x) + (1+x*x)*y
|
|
* Therefore, for better accuracy in computing tan(x+y), let
|
|
* r = x^3 * R(x^2)
|
|
* then
|
|
* tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
|
|
*
|
|
* 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
|
|
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
|
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
static const long double
|
|
one = 1.0L,
|
|
pio4hi = 7.8539816339744830961566084581987569936977E-1L,
|
|
pio4lo = 2.1679525325309452561992610065108379921906E-35L,
|
|
|
|
/* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
|
|
0 <= x <= 0.6743316650390625
|
|
Peak relative error 8.0e-36 */
|
|
TH = 3.333333333333333333333333333333333333333E-1L,
|
|
T0 = -1.813014711743583437742363284336855889393E7L,
|
|
T1 = 1.320767960008972224312740075083259247618E6L,
|
|
T2 = -2.626775478255838182468651821863299023956E4L,
|
|
T3 = 1.764573356488504935415411383687150199315E2L,
|
|
T4 = -3.333267763822178690794678978979803526092E-1L,
|
|
|
|
U0 = -1.359761033807687578306772463253710042010E8L,
|
|
U1 = 6.494370630656893175666729313065113194784E7L,
|
|
U2 = -4.180787672237927475505536849168729386782E6L,
|
|
U3 = 8.031643765106170040139966622980914621521E4L,
|
|
U4 = -5.323131271912475695157127875560667378597E2L;
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
|
|
|
|
|
long double
|
|
__kernel_tanl (long double x, long double y, int iy)
|
|
{
|
|
long double z, r, v, w, s;
|
|
int32_t ix, sign, hx, lx;
|
|
double xhi;
|
|
|
|
xhi = ldbl_high (x);
|
|
EXTRACT_WORDS (hx, lx, xhi);
|
|
ix = hx & 0x7fffffff;
|
|
if (ix < 0x3c600000) /* x < 2**-57 */
|
|
{
|
|
if ((int) x == 0) /* generate inexact */
|
|
{
|
|
if ((ix | lx | (iy + 1)) == 0)
|
|
return one / fabs (x);
|
|
else
|
|
return (iy == 1) ? x : -one / x;
|
|
}
|
|
}
|
|
if (ix >= 0x3fe59420) /* |x| >= 0.6743316650390625 */
|
|
{
|
|
if ((hx & 0x80000000) != 0)
|
|
{
|
|
x = -x;
|
|
y = -y;
|
|
sign = -1;
|
|
}
|
|
else
|
|
sign = 1;
|
|
z = pio4hi - x;
|
|
w = pio4lo - y;
|
|
x = z + w;
|
|
y = 0.0;
|
|
}
|
|
z = x * x;
|
|
r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
|
|
v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
|
|
r = r / v;
|
|
|
|
s = z * x;
|
|
r = y + z * (s * r + y);
|
|
r += TH * s;
|
|
w = x + r;
|
|
if (ix >= 0x3fe59420)
|
|
{
|
|
v = (long double) iy;
|
|
w = (v - 2.0 * (x - (w * w / (w + v) - r)));
|
|
if (sign < 0)
|
|
w = -w;
|
|
return w;
|
|
}
|
|
if (iy == 1)
|
|
return w;
|
|
else
|
|
{ /* if allow error up to 2 ulp,
|
|
simply return -1.0/(x+r) here */
|
|
/* compute -1.0/(x+r) accurately */
|
|
long double u1, z1;
|
|
|
|
u1 = ldbl_high (w);
|
|
v = r - (u1 - x); /* u1+v = r+x */
|
|
z = -1.0 / w;
|
|
z1 = ldbl_high (z);
|
|
s = 1.0 + z1 * u1;
|
|
return z1 + z * (s + z1 * v);
|
|
}
|
|
}
|