glibc/sysdeps/ieee754/ldbl-128ibm/e_powl.c
Joseph Myers 6ace393821 Fix pow missing underflows (bug 18825).
Similar to various other bugs in this area, pow functions can fail to
raise the underflow exception when the result is tiny and inexact but
one or more low bits of the intermediate result that is scaled down
(or, in the i386 case, converted from a wider evaluation format) are
zero.  This patch forces the exception in a similar way to previous
fixes, thereby concluding the fixes for known bugs with missing
underflow exceptions currently filed in Bugzilla.

Tested for x86_64, x86, mips64 and powerpc.

	[BZ #18825]
	* sysdeps/i386/fpu/i386-math-asm.h (FLT_NARROW_EVAL_UFLOW_NONNAN):
	New macro.
	(DBL_NARROW_EVAL_UFLOW_NONNAN): Likewise.
	(LDBL_CHECK_FORCE_UFLOW_NONNAN): Likewise.
	* sysdeps/i386/fpu/e_pow.S: Use DEFINE_DBL_MIN.
	(__ieee754_pow): Use DBL_NARROW_EVAL_UFLOW_NONNAN instead of
	DBL_NARROW_EVAL, reloading the PIC register as needed.
	* sysdeps/i386/fpu/e_powf.S: Use DEFINE_FLT_MIN.
	(__ieee754_powf): Use FLT_NARROW_EVAL_UFLOW_NONNAN instead of
	FLT_NARROW_EVAL.  Use separate return path for case when first
	argument is NaN.
	* sysdeps/i386/fpu/e_powl.S: Include <i386-math-asm.h>.  Use
	DEFINE_LDBL_MIN.
	(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN, reloading the
	PIC register.
	* sysdeps/ieee754/dbl-64/e_pow.c (__ieee754_pow): Use
	math_check_force_underflow_nonneg.
	* sysdeps/ieee754/flt-32/e_powf.c (__ieee754_powf): Force
	underflow for subnormal result.
	* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Use
	math_check_force_underflow_nonneg.
	* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Use
	math_check_force_underflow.
	* sysdeps/x86_64/fpu/x86_64-math-asm.h
	(LDBL_CHECK_FORCE_UFLOW_NONNAN): New macro.
	* sysdeps/x86_64/fpu/e_powl.S: Include <x86_64-math-asm.h>.  Use
	DEFINE_LDBL_MIN.
	(__ieee754_powl): Use LDBL_CHECK_FORCE_UFLOW_NONNAN.
	* math/auto-libm-test-in: Add more tests of pow.
	* math/auto-libm-test-out: Regenerated.
2015-09-25 22:29:10 +00:00

416 lines
11 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Expansions and modifications for 128-bit long double are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* __ieee754_powl(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 113-53 = 60 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
*/
#include <math.h>
#include <math_private.h>
static const long double bp[] = {
1.0L,
1.5L,
};
/* log_2(1.5) */
static const long double dp_h[] = {
0.0,
5.8496250072115607565592654282227158546448E-1L
};
/* Low part of log_2(1.5) */
static const long double dp_l[] = {
0.0,
1.0579781240112554492329533686862998106046E-16L
};
static const long double zero = 0.0L,
one = 1.0L,
two = 2.0L,
two113 = 1.0384593717069655257060992658440192E34L,
huge = 1.0e300L,
tiny = 1.0e-300L;
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
z = (x-1)/(x+1)
1 <= x <= 1.25
Peak relative error 2.3e-37 */
static const long double LN[] =
{
-3.0779177200290054398792536829702930623200E1L,
6.5135778082209159921251824580292116201640E1L,
-4.6312921812152436921591152809994014413540E1L,
1.2510208195629420304615674658258363295208E1L,
-9.9266909031921425609179910128531667336670E-1L
};
static const long double LD[] =
{
-5.129862866715009066465422805058933131960E1L,
1.452015077564081884387441590064272782044E2L,
-1.524043275549860505277434040464085593165E2L,
7.236063513651544224319663428634139768808E1L,
-1.494198912340228235853027849917095580053E1L
/* 1.0E0 */
};
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
0 <= x <= 0.5
Peak relative error 5.7e-38 */
static const long double PN[] =
{
5.081801691915377692446852383385968225675E8L,
9.360895299872484512023336636427675327355E6L,
4.213701282274196030811629773097579432957E4L,
5.201006511142748908655720086041570288182E1L,
9.088368420359444263703202925095675982530E-3L,
};
static const long double PD[] =
{
3.049081015149226615468111430031590411682E9L,
1.069833887183886839966085436512368982758E8L,
8.259257717868875207333991924545445705394E5L,
1.872583833284143212651746812884298360922E3L,
/* 1.0E0 */
};
static const long double
/* ln 2 */
lg2 = 6.9314718055994530941723212145817656807550E-1L,
lg2_h = 6.9314718055994528622676398299518041312695E-1L,
lg2_l = 2.3190468138462996154948554638754786504121E-17L,
ovt = 8.0085662595372944372e-0017L,
/* 2/(3*log(2)) */
cp = 9.6179669392597560490661645400126142495110E-1L,
cp_h = 9.6179669392597555432899980587535537779331E-1L,
cp_l = 5.0577616648125906047157785230014751039424E-17L;
long double
__ieee754_powl (long double x, long double y)
{
long double z, ax, z_h, z_l, p_h, p_l;
long double y1, t1, t2, r, s, t, u, v, w;
long double s2, s_h, s_l, t_h, t_l, ay;
int32_t i, j, k, yisint, n;
uint32_t ix, iy;
int32_t hx, hy, hax;
double ohi, xhi, xlo, yhi, ylo;
uint32_t lx, ly, lj;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS (hx, lx, xhi);
ix = hx & 0x7fffffff;
ldbl_unpack (y, &yhi, &ylo);
EXTRACT_WORDS (hy, ly, yhi);
iy = hy & 0x7fffffff;
/* y==zero: x**0 = 1 */
if ((iy | ly) == 0)
return one;
/* 1.0**y = 1; -1.0**+-Inf = 1 */
if (x == one)
return one;
if (x == -1.0L && ((iy - 0x7ff00000) | ly) == 0)
return one;
/* +-NaN return x+y */
if ((ix >= 0x7ff00000 && ((ix - 0x7ff00000) | lx) != 0)
|| (iy >= 0x7ff00000 && ((iy - 0x7ff00000) | ly) != 0))
return x + y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if (hx < 0)
{
uint32_t low_ye;
GET_HIGH_WORD (low_ye, ylo);
if ((low_ye & 0x7fffffff) >= 0x43400000) /* Low part >= 2^53 */
yisint = 2; /* even integer y */
else if (iy >= 0x3ff00000) /* 1.0 */
{
if (__floorl (y) == y)
{
z = 0.5 * y;
if (__floorl (z) == z)
yisint = 2;
else
yisint = 1;
}
}
}
ax = fabsl (x);
/* special value of y */
if (ly == 0)
{
if (iy == 0x7ff00000) /* y is +-inf */
{
if (ax > one)
/* (|x|>1)**+-inf = inf,0 */
return (hy >= 0) ? y : zero;
else
/* (|x|<1)**-,+inf = inf,0 */
return (hy < 0) ? -y : zero;
}
if (ylo == 0.0)
{
if (iy == 0x3ff00000)
{ /* y is +-1 */
if (hy < 0)
return one / x;
else
return x;
}
if (hy == 0x40000000)
return x * x; /* y is 2 */
if (hy == 0x3fe00000)
{ /* y is 0.5 */
if (hx >= 0) /* x >= +0 */
return __ieee754_sqrtl (x);
}
}
}
/* special value of x */
if (lx == 0)
{
if (ix == 0x7ff00000 || ix == 0 || (ix == 0x3ff00000 && xlo == 0.0))
{
z = ax; /*x is +-0,+-inf,+-1 */
if (hy < 0)
z = one / z; /* z = (1/|x|) */
if (hx < 0)
{
if (((ix - 0x3ff00000) | yisint) == 0)
{
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
}
else if (yisint == 1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
return (x - x) / (x - x);
/* |y| is huge.
2^-16495 = 1/2 of smallest representable value.
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
if (iy > 0x41d654b0)
{
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
if (iy > 0x47d654b0)
{
if (ix <= 0x3fefffff)
return (hy < 0) ? huge * huge : tiny * tiny;
if (ix >= 0x3ff00000)
return (hy > 0) ? huge * huge : tiny * tiny;
}
/* over/underflow if x is not close to one */
if (ix < 0x3fefffff)
return (hy < 0) ? huge * huge : tiny * tiny;
if (ix > 0x3ff00000)
return (hy > 0) ? huge * huge : tiny * tiny;
}
ay = y > 0 ? y : -y;
if (ay < 0x1p-117)
y = y < 0 ? -0x1p-117 : 0x1p-117;
n = 0;
/* take care subnormal number */
if (ix < 0x00100000)
{
ax *= two113;
n -= 113;
ohi = ldbl_high (ax);
GET_HIGH_WORD (ix, ohi);
}
n += ((ix) >> 20) - 0x3ff;
j = ix & 0x000fffff;
/* determine interval */
ix = j | 0x3ff00000; /* normalize ix */
if (j <= 0x39880)
k = 0; /* |x|<sqrt(3/2) */
else if (j < 0xbb670)
k = 1; /* |x|<sqrt(3) */
else
{
k = 0;
n += 1;
ix -= 0x00100000;
}
ohi = ldbl_high (ax);
GET_HIGH_WORD (hax, ohi);
ax = __scalbnl (ax, ((int) ((ix - hax) * 2)) >> 21);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one / (ax + bp[k]);
s = u * v;
s_h = ldbl_high (s);
/* t_h=ax+bp[k] High */
t_h = ax + bp[k];
t_h = ldbl_high (t_h);
t_l = ax - (t_h - bp[k]);
s_l = v * ((u - s_h * t_h) - s_h * t_l);
/* compute log(ax) */
s2 = s * s;
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
r = s2 * s2 * u / v;
r += s_l * (s_h + s);
s2 = s_h * s_h;
t_h = 3.0 + s2 + r;
t_h = ldbl_high (t_h);
t_l = r - ((t_h - 3.0) - s2);
/* u+v = s*(1+...) */
u = s_h * t_h;
v = s_l * t_h + t_l * s;
/* 2/(3log2)*(s+...) */
p_h = u + v;
p_h = ldbl_high (p_h);
p_l = v - (p_h - u);
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l * p_h + p_l * cp + dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (long double) n;
t1 = (((z_h + z_l) + dp_h[k]) + t);
t1 = ldbl_high (t1);
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
/* s (sign of result -ve**odd) = -1 else = 1 */
s = one;
if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
s = -one; /* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = ldbl_high (y);
p_l = (y - y1) * t1 + y * t2;
p_h = y1 * t1;
z = p_l + p_h;
ohi = ldbl_high (z);
EXTRACT_WORDS (j, lj, ohi);
if (j >= 0x40d00000) /* z >= 16384 */
{
/* if z > 16384 */
if (((j - 0x40d00000) | lj) != 0)
return s * huge * huge; /* overflow */
else
{
if (p_l + ovt > z - p_h)
return s * huge * huge; /* overflow */
}
}
else if ((j & 0x7fffffff) >= 0x40d01b90) /* z <= -16495 */
{
/* z < -16495 */
if (((j - 0xc0d01bc0) | lj) != 0)
return s * tiny * tiny; /* underflow */
else
{
if (p_l <= z - p_h)
return s * tiny * tiny; /* underflow */
}
}
/* compute 2**(p_h+p_l) */
i = j & 0x7fffffff;
k = (i >> 20) - 0x3ff;
n = 0;
if (i > 0x3fe00000)
{ /* if |z| > 0.5, set n = [z+0.5] */
n = __floorl (z + 0.5L);
t = n;
p_h -= t;
}
t = p_l + p_h;
t = ldbl_high (t);
u = t * lg2_h;
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
z = u + v;
w = v - (z - u);
/* exp(z) */
t = z * z;
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
t1 = z - t * u / v;
r = (z * t1) / (t1 - two) - (w + z * w);
z = one - (r - z);
z = __scalbnl (z, n);
math_check_force_underflow_nonneg (z);
return s * z;
}
strong_alias (__ieee754_powl, __powl_finite)