mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-23 19:30:10 +00:00
246 lines
5.4 KiB
C
246 lines
5.4 KiB
C
/* mpn_divrem -- Divide natural numbers, producing both remainder and
|
|
quotient.
|
|
|
|
Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
|
MA 02111-1307, USA. */
|
|
|
|
#include <gmp.h>
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
|
|
the NSIZE-DSIZE least significant quotient limbs at QP
|
|
and the DSIZE long remainder at NP. If QEXTRA_LIMBS is
|
|
non-zero, generate that many fraction bits and append them after the
|
|
other quotient limbs.
|
|
Return the most significant limb of the quotient, this is always 0 or 1.
|
|
|
|
Preconditions:
|
|
0. NSIZE >= DSIZE.
|
|
1. The most significant bit of the divisor must be set.
|
|
2. QP must either not overlap with the input operands at all, or
|
|
QP + DSIZE >= NP must hold true. (This means that it's
|
|
possible to put the quotient in the high part of NUM, right after the
|
|
remainder in NUM.
|
|
3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero. */
|
|
|
|
mp_limb_t
|
|
#if __STDC__
|
|
mpn_divrem (mp_ptr qp, mp_size_t qextra_limbs,
|
|
mp_ptr np, mp_size_t nsize,
|
|
mp_srcptr dp, mp_size_t dsize)
|
|
#else
|
|
mpn_divrem (qp, qextra_limbs, np, nsize, dp, dsize)
|
|
mp_ptr qp;
|
|
mp_size_t qextra_limbs;
|
|
mp_ptr np;
|
|
mp_size_t nsize;
|
|
mp_srcptr dp;
|
|
mp_size_t dsize;
|
|
#endif
|
|
{
|
|
mp_limb_t most_significant_q_limb = 0;
|
|
|
|
switch (dsize)
|
|
{
|
|
case 0:
|
|
/* We are asked to divide by zero, so go ahead and do it! (To make
|
|
the compiler not remove this statement, return the value.) */
|
|
return 1 / dsize;
|
|
|
|
case 1:
|
|
{
|
|
mp_size_t i;
|
|
mp_limb_t n1;
|
|
mp_limb_t d;
|
|
|
|
d = dp[0];
|
|
n1 = np[nsize - 1];
|
|
|
|
if (n1 >= d)
|
|
{
|
|
n1 -= d;
|
|
most_significant_q_limb = 1;
|
|
}
|
|
|
|
qp += qextra_limbs;
|
|
for (i = nsize - 2; i >= 0; i--)
|
|
udiv_qrnnd (qp[i], n1, n1, np[i], d);
|
|
qp -= qextra_limbs;
|
|
|
|
for (i = qextra_limbs - 1; i >= 0; i--)
|
|
udiv_qrnnd (qp[i], n1, n1, 0, d);
|
|
|
|
np[0] = n1;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
{
|
|
mp_size_t i;
|
|
mp_limb_t n1, n0, n2;
|
|
mp_limb_t d1, d0;
|
|
|
|
np += nsize - 2;
|
|
d1 = dp[1];
|
|
d0 = dp[0];
|
|
n1 = np[1];
|
|
n0 = np[0];
|
|
|
|
if (n1 >= d1 && (n1 > d1 || n0 >= d0))
|
|
{
|
|
sub_ddmmss (n1, n0, n1, n0, d1, d0);
|
|
most_significant_q_limb = 1;
|
|
}
|
|
|
|
for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--)
|
|
{
|
|
mp_limb_t q;
|
|
mp_limb_t r;
|
|
|
|
if (i >= qextra_limbs)
|
|
np--;
|
|
else
|
|
np[0] = 0;
|
|
|
|
if (n1 == d1)
|
|
{
|
|
/* Q should be either 111..111 or 111..110. Need special
|
|
treatment of this rare case as normal division would
|
|
give overflow. */
|
|
q = ~(mp_limb_t) 0;
|
|
|
|
r = n0 + d1;
|
|
if (r < d1) /* Carry in the addition? */
|
|
{
|
|
add_ssaaaa (n1, n0, r - d0, np[0], 0, d0);
|
|
qp[i] = q;
|
|
continue;
|
|
}
|
|
n1 = d0 - (d0 != 0);
|
|
n0 = -d0;
|
|
}
|
|
else
|
|
{
|
|
udiv_qrnnd (q, r, n1, n0, d1);
|
|
umul_ppmm (n1, n0, d0, q);
|
|
}
|
|
|
|
n2 = np[0];
|
|
q_test:
|
|
if (n1 > r || (n1 == r && n0 > n2))
|
|
{
|
|
/* The estimated Q was too large. */
|
|
q--;
|
|
|
|
sub_ddmmss (n1, n0, n1, n0, 0, d0);
|
|
r += d1;
|
|
if (r >= d1) /* If not carry, test Q again. */
|
|
goto q_test;
|
|
}
|
|
|
|
qp[i] = q;
|
|
sub_ddmmss (n1, n0, r, n2, n1, n0);
|
|
}
|
|
np[1] = n1;
|
|
np[0] = n0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
mp_size_t i;
|
|
mp_limb_t dX, d1, n0;
|
|
|
|
np += nsize - dsize;
|
|
dX = dp[dsize - 1];
|
|
d1 = dp[dsize - 2];
|
|
n0 = np[dsize - 1];
|
|
|
|
if (n0 >= dX)
|
|
{
|
|
if (n0 > dX || mpn_cmp (np, dp, dsize - 1) >= 0)
|
|
{
|
|
mpn_sub_n (np, np, dp, dsize);
|
|
n0 = np[dsize - 1];
|
|
most_significant_q_limb = 1;
|
|
}
|
|
}
|
|
|
|
for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--)
|
|
{
|
|
mp_limb_t q;
|
|
mp_limb_t n1, n2;
|
|
mp_limb_t cy_limb;
|
|
|
|
if (i >= qextra_limbs)
|
|
{
|
|
np--;
|
|
n2 = np[dsize];
|
|
}
|
|
else
|
|
{
|
|
n2 = np[dsize - 1];
|
|
MPN_COPY_DECR (np + 1, np, dsize);
|
|
np[0] = 0;
|
|
}
|
|
|
|
if (n0 == dX)
|
|
/* This might over-estimate q, but it's probably not worth
|
|
the extra code here to find out. */
|
|
q = ~(mp_limb_t) 0;
|
|
else
|
|
{
|
|
mp_limb_t r;
|
|
|
|
udiv_qrnnd (q, r, n0, np[dsize - 1], dX);
|
|
umul_ppmm (n1, n0, d1, q);
|
|
|
|
while (n1 > r || (n1 == r && n0 > np[dsize - 2]))
|
|
{
|
|
q--;
|
|
r += dX;
|
|
if (r < dX) /* I.e. "carry in previous addition?" */
|
|
break;
|
|
n1 -= n0 < d1;
|
|
n0 -= d1;
|
|
}
|
|
}
|
|
|
|
/* Possible optimization: We already have (q * n0) and (1 * n1)
|
|
after the calculation of q. Taking advantage of that, we
|
|
could make this loop make two iterations less. */
|
|
|
|
cy_limb = mpn_submul_1 (np, dp, dsize, q);
|
|
|
|
if (n2 != cy_limb)
|
|
{
|
|
mpn_add_n (np, np, dp, dsize);
|
|
q--;
|
|
}
|
|
|
|
qp[i] = q;
|
|
n0 = np[dsize - 1];
|
|
}
|
|
}
|
|
}
|
|
|
|
return most_significant_q_limb;
|
|
}
|