mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-14 15:20:04 +00:00
688903eb3e
* All files with FSF copyright notices: Update copyright dates using scripts/update-copyrights. * locale/programs/charmap-kw.h: Regenerated. * locale/programs/locfile-kw.h: Likewise.
172 lines
4.5 KiB
C
172 lines
4.5 KiB
C
/* Compute sine and cosine of argument.
|
|
Copyright (C) 2017-2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <libm-alias-float.h>
|
|
#include "s_sincosf.h"
|
|
|
|
#ifndef SINCOSF
|
|
# define SINCOSF_FUNC __sincosf
|
|
#else
|
|
# define SINCOSF_FUNC SINCOSF
|
|
#endif
|
|
|
|
void
|
|
SINCOSF_FUNC (float x, float *sinx, float *cosx)
|
|
{
|
|
double cx;
|
|
double theta = x;
|
|
double abstheta = fabs (theta);
|
|
/* If |x|< Pi/4. */
|
|
if (isless (abstheta, M_PI_4))
|
|
{
|
|
if (abstheta >= 0x1p-5) /* |x| >= 2^-5. */
|
|
{
|
|
const double theta2 = theta * theta;
|
|
/* Chebyshev polynomial of the form for sin and cos. */
|
|
cx = C3 + theta2 * C4;
|
|
cx = C2 + theta2 * cx;
|
|
cx = C1 + theta2 * cx;
|
|
cx = C0 + theta2 * cx;
|
|
cx = 1.0 + theta2 * cx;
|
|
*cosx = cx;
|
|
cx = S3 + theta2 * S4;
|
|
cx = S2 + theta2 * cx;
|
|
cx = S1 + theta2 * cx;
|
|
cx = S0 + theta2 * cx;
|
|
cx = theta + theta * theta2 * cx;
|
|
*sinx = cx;
|
|
}
|
|
else if (abstheta >= 0x1p-27) /* |x| >= 2^-27. */
|
|
{
|
|
/* A simpler Chebyshev approximation is close enough for this range:
|
|
for sin: x+x^3*(SS0+x^2*SS1)
|
|
for cos: 1.0+x^2*(CC0+x^3*CC1). */
|
|
const double theta2 = theta * theta;
|
|
cx = CC0 + theta * theta2 * CC1;
|
|
cx = 1.0 + theta2 * cx;
|
|
*cosx = cx;
|
|
cx = SS0 + theta2 * SS1;
|
|
cx = theta + theta * theta2 * cx;
|
|
*sinx = cx;
|
|
}
|
|
else
|
|
{
|
|
/* Handle some special cases. */
|
|
if (theta)
|
|
*sinx = theta - (theta * SMALL);
|
|
else
|
|
*sinx = theta;
|
|
*cosx = 1.0 - abstheta;
|
|
}
|
|
}
|
|
else /* |x| >= Pi/4. */
|
|
{
|
|
unsigned int signbit = isless (x, 0);
|
|
if (isless (abstheta, 9 * M_PI_4)) /* |x| < 9*Pi/4. */
|
|
{
|
|
/* There are cases where FE_UPWARD rounding mode can
|
|
produce a result of abstheta * inv_PI_4 == 9,
|
|
where abstheta < 9pi/4, so the domain for
|
|
pio2_table must go to 5 (9 / 2 + 1). */
|
|
unsigned int n = (abstheta * inv_PI_4) + 1;
|
|
theta = abstheta - pio2_table[n / 2];
|
|
*sinx = reduced_sin (theta, n, signbit);
|
|
*cosx = reduced_cos (theta, n);
|
|
}
|
|
else if (isless (abstheta, INFINITY))
|
|
{
|
|
if (abstheta < 0x1p+23) /* |x| < 2^23. */
|
|
{
|
|
unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
|
|
double x = n / 2;
|
|
theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
|
|
/* Argument reduction needed. */
|
|
*sinx = reduced_sin (theta, n, signbit);
|
|
*cosx = reduced_cos (theta, n);
|
|
}
|
|
else /* |x| >= 2^23. */
|
|
{
|
|
x = fabsf (x);
|
|
int exponent;
|
|
GET_FLOAT_WORD (exponent, x);
|
|
exponent
|
|
= (exponent >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS;
|
|
exponent += 3;
|
|
exponent /= 28;
|
|
double a = invpio4_table[exponent] * x;
|
|
double b = invpio4_table[exponent + 1] * x;
|
|
double c = invpio4_table[exponent + 2] * x;
|
|
double d = invpio4_table[exponent + 3] * x;
|
|
uint64_t l = a;
|
|
l &= ~0x7;
|
|
a -= l;
|
|
double e = a + b;
|
|
l = e;
|
|
e = a - l;
|
|
if (l & 1)
|
|
{
|
|
e -= 1.0;
|
|
e += b;
|
|
e += c;
|
|
e += d;
|
|
e *= M_PI_4;
|
|
*sinx = reduced_sin (e, l + 1, signbit);
|
|
*cosx = reduced_cos (e, l + 1);
|
|
}
|
|
else
|
|
{
|
|
e += b;
|
|
e += c;
|
|
e += d;
|
|
if (e <= 1.0)
|
|
{
|
|
e *= M_PI_4;
|
|
*sinx = reduced_sin (e, l + 1, signbit);
|
|
*cosx = reduced_cos (e, l + 1);
|
|
}
|
|
else
|
|
{
|
|
l++;
|
|
e -= 2.0;
|
|
e *= M_PI_4;
|
|
*sinx = reduced_sin (e, l + 1, signbit);
|
|
*cosx = reduced_cos (e, l + 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int32_t ix;
|
|
/* High word of x. */
|
|
GET_FLOAT_WORD (ix, abstheta);
|
|
/* sin/cos(Inf or NaN) is NaN. */
|
|
*sinx = *cosx = x - x;
|
|
if (ix == 0x7f800000)
|
|
__set_errno (EDOM);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef SINCOSF
|
|
libm_alias_float (__sincos, sincos)
|
|
#endif
|