mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-15 13:30:09 +00:00
c643db8792
j1 and jn can underflow for small arguments, but fail to set errno when underflowing to 0. This patch fixes them to set errno in that case. Tested for x86_64, x86, mips64 and powerpc. [BZ #18611] * sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Set errno and avoid excess range and precision on underflow. * sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise. * sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Likewise. * sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise. * sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Set errno on underflow. * sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Likewise. * sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise. * math/auto-libm-test-in: Do not allow missing errno setting for tests of j1 and jn. * math/auto-libm-test-out: Regenerated.
348 lines
8.6 KiB
C
348 lines
8.6 KiB
C
/* @(#)e_jn.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/*
|
|
* __ieee754_jn(n, x), __ieee754_yn(n, x)
|
|
* floating point Bessel's function of the 1st and 2nd kind
|
|
* of order n
|
|
*
|
|
* Special cases:
|
|
* y0(0)=y1(0)=yn(n,0) = -inf with overflow signal;
|
|
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
|
* Note 2. About jn(n,x), yn(n,x)
|
|
* For n=0, j0(x) is called,
|
|
* for n=1, j1(x) is called,
|
|
* for n<x, forward recursion us used starting
|
|
* from values of j0(x) and j1(x).
|
|
* for n>x, a continued fraction approximation to
|
|
* j(n,x)/j(n-1,x) is evaluated and then backward
|
|
* recursion is used starting from a supposed value
|
|
* for j(n,x). The resulting value of j(0,x) is
|
|
* compared with the actual value to correct the
|
|
* supposed value of j(n,x).
|
|
*
|
|
* yn(n,x) is similar in all respects, except
|
|
* that forward recursion is used for all
|
|
* values of n>1.
|
|
*
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static const double
|
|
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
|
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
|
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
|
|
|
|
static const double zero = 0.00000000000000000000e+00;
|
|
|
|
double
|
|
__ieee754_jn (int n, double x)
|
|
{
|
|
int32_t i, hx, ix, lx, sgn;
|
|
double a, b, temp, di, ret;
|
|
double z, w;
|
|
|
|
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
|
* Thus, J(-n,x) = J(n,-x)
|
|
*/
|
|
EXTRACT_WORDS (hx, lx, x);
|
|
ix = 0x7fffffff & hx;
|
|
/* if J(n,NaN) is NaN */
|
|
if (__glibc_unlikely ((ix | ((u_int32_t) (lx | -lx)) >> 31) > 0x7ff00000))
|
|
return x + x;
|
|
if (n < 0)
|
|
{
|
|
n = -n;
|
|
x = -x;
|
|
hx ^= 0x80000000;
|
|
}
|
|
if (n == 0)
|
|
return (__ieee754_j0 (x));
|
|
if (n == 1)
|
|
return (__ieee754_j1 (x));
|
|
sgn = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */
|
|
x = fabs (x);
|
|
{
|
|
SET_RESTORE_ROUND (FE_TONEAREST);
|
|
if (__glibc_unlikely ((ix | lx) == 0 || ix >= 0x7ff00000))
|
|
/* if x is 0 or inf */
|
|
return sgn == 1 ? -zero : zero;
|
|
else if ((double) n <= x)
|
|
{
|
|
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
|
if (ix >= 0x52D00000) /* x > 2**302 */
|
|
{ /* (x >> n**2)
|
|
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
* Let s=sin(x), c=cos(x),
|
|
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
*
|
|
* n sin(xn)*sqt2 cos(xn)*sqt2
|
|
* ----------------------------------
|
|
* 0 s-c c+s
|
|
* 1 -s-c -c+s
|
|
* 2 -s+c -c-s
|
|
* 3 s+c c-s
|
|
*/
|
|
double s;
|
|
double c;
|
|
__sincos (x, &s, &c);
|
|
switch (n & 3)
|
|
{
|
|
case 0: temp = c + s; break;
|
|
case 1: temp = -c + s; break;
|
|
case 2: temp = -c - s; break;
|
|
case 3: temp = c - s; break;
|
|
}
|
|
b = invsqrtpi * temp / __ieee754_sqrt (x);
|
|
}
|
|
else
|
|
{
|
|
a = __ieee754_j0 (x);
|
|
b = __ieee754_j1 (x);
|
|
for (i = 1; i < n; i++)
|
|
{
|
|
temp = b;
|
|
b = b * ((double) (i + i) / x) - a; /* avoid underflow */
|
|
a = temp;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (ix < 0x3e100000) /* x < 2**-29 */
|
|
{ /* x is tiny, return the first Taylor expansion of J(n,x)
|
|
* J(n,x) = 1/n!*(x/2)^n - ...
|
|
*/
|
|
if (n > 33) /* underflow */
|
|
b = zero;
|
|
else
|
|
{
|
|
temp = x * 0.5; b = temp;
|
|
for (a = one, i = 2; i <= n; i++)
|
|
{
|
|
a *= (double) i; /* a = n! */
|
|
b *= temp; /* b = (x/2)^n */
|
|
}
|
|
b = b / a;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* use backward recurrence */
|
|
/* x x^2 x^2
|
|
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
|
* 2n - 2(n+1) - 2(n+2)
|
|
*
|
|
* 1 1 1
|
|
* (for large x) = ---- ------ ------ .....
|
|
* 2n 2(n+1) 2(n+2)
|
|
* -- - ------ - ------ -
|
|
* x x x
|
|
*
|
|
* Let w = 2n/x and h=2/x, then the above quotient
|
|
* is equal to the continued fraction:
|
|
* 1
|
|
* = -----------------------
|
|
* 1
|
|
* w - -----------------
|
|
* 1
|
|
* w+h - ---------
|
|
* w+2h - ...
|
|
*
|
|
* To determine how many terms needed, let
|
|
* Q(0) = w, Q(1) = w(w+h) - 1,
|
|
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
|
* When Q(k) > 1e4 good for single
|
|
* When Q(k) > 1e9 good for double
|
|
* When Q(k) > 1e17 good for quadruple
|
|
*/
|
|
/* determine k */
|
|
double t, v;
|
|
double q0, q1, h, tmp; int32_t k, m;
|
|
w = (n + n) / (double) x; h = 2.0 / (double) x;
|
|
q0 = w; z = w + h; q1 = w * z - 1.0; k = 1;
|
|
while (q1 < 1.0e9)
|
|
{
|
|
k += 1; z += h;
|
|
tmp = z * q1 - q0;
|
|
q0 = q1;
|
|
q1 = tmp;
|
|
}
|
|
m = n + n;
|
|
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
|
t = one / (i / x - t);
|
|
a = t;
|
|
b = one;
|
|
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
|
* Hence, if n*(log(2n/x)) > ...
|
|
* single 8.8722839355e+01
|
|
* double 7.09782712893383973096e+02
|
|
* long double 1.1356523406294143949491931077970765006170e+04
|
|
* then recurrent value may overflow and the result is
|
|
* likely underflow to zero
|
|
*/
|
|
tmp = n;
|
|
v = two / x;
|
|
tmp = tmp * __ieee754_log (fabs (v * tmp));
|
|
if (tmp < 7.09782712893383973096e+02)
|
|
{
|
|
for (i = n - 1, di = (double) (i + i); i > 0; i--)
|
|
{
|
|
temp = b;
|
|
b *= di;
|
|
b = b / x - a;
|
|
a = temp;
|
|
di -= two;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = n - 1, di = (double) (i + i); i > 0; i--)
|
|
{
|
|
temp = b;
|
|
b *= di;
|
|
b = b / x - a;
|
|
a = temp;
|
|
di -= two;
|
|
/* scale b to avoid spurious overflow */
|
|
if (b > 1e100)
|
|
{
|
|
a /= b;
|
|
t /= b;
|
|
b = one;
|
|
}
|
|
}
|
|
}
|
|
/* j0() and j1() suffer enormous loss of precision at and
|
|
* near zero; however, we know that their zero points never
|
|
* coincide, so just choose the one further away from zero.
|
|
*/
|
|
z = __ieee754_j0 (x);
|
|
w = __ieee754_j1 (x);
|
|
if (fabs (z) >= fabs (w))
|
|
b = (t * z / b);
|
|
else
|
|
b = (t * w / a);
|
|
}
|
|
}
|
|
if (sgn == 1)
|
|
ret = -b;
|
|
else
|
|
ret = b;
|
|
ret = math_narrow_eval (ret);
|
|
}
|
|
if (ret == 0)
|
|
{
|
|
ret = math_narrow_eval (__copysign (DBL_MIN, ret) * DBL_MIN);
|
|
__set_errno (ERANGE);
|
|
}
|
|
else
|
|
math_check_force_underflow (ret);
|
|
return ret;
|
|
}
|
|
strong_alias (__ieee754_jn, __jn_finite)
|
|
|
|
double
|
|
__ieee754_yn (int n, double x)
|
|
{
|
|
int32_t i, hx, ix, lx;
|
|
int32_t sign;
|
|
double a, b, temp, ret;
|
|
|
|
EXTRACT_WORDS (hx, lx, x);
|
|
ix = 0x7fffffff & hx;
|
|
/* if Y(n,NaN) is NaN */
|
|
if (__glibc_unlikely ((ix | ((u_int32_t) (lx | -lx)) >> 31) > 0x7ff00000))
|
|
return x + x;
|
|
if (__glibc_unlikely ((ix | lx) == 0))
|
|
return -HUGE_VAL + x;
|
|
/* -inf and overflow exception. */;
|
|
if (__glibc_unlikely (hx < 0))
|
|
return zero / (zero * x);
|
|
sign = 1;
|
|
if (n < 0)
|
|
{
|
|
n = -n;
|
|
sign = 1 - ((n & 1) << 1);
|
|
}
|
|
if (n == 0)
|
|
return (__ieee754_y0 (x));
|
|
{
|
|
SET_RESTORE_ROUND (FE_TONEAREST);
|
|
if (n == 1)
|
|
{
|
|
ret = sign * __ieee754_y1 (x);
|
|
goto out;
|
|
}
|
|
if (__glibc_unlikely (ix == 0x7ff00000))
|
|
return zero;
|
|
if (ix >= 0x52D00000) /* x > 2**302 */
|
|
{ /* (x >> n**2)
|
|
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
* Let s=sin(x), c=cos(x),
|
|
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
*
|
|
* n sin(xn)*sqt2 cos(xn)*sqt2
|
|
* ----------------------------------
|
|
* 0 s-c c+s
|
|
* 1 -s-c -c+s
|
|
* 2 -s+c -c-s
|
|
* 3 s+c c-s
|
|
*/
|
|
double c;
|
|
double s;
|
|
__sincos (x, &s, &c);
|
|
switch (n & 3)
|
|
{
|
|
case 0: temp = s - c; break;
|
|
case 1: temp = -s - c; break;
|
|
case 2: temp = -s + c; break;
|
|
case 3: temp = s + c; break;
|
|
}
|
|
b = invsqrtpi * temp / __ieee754_sqrt (x);
|
|
}
|
|
else
|
|
{
|
|
u_int32_t high;
|
|
a = __ieee754_y0 (x);
|
|
b = __ieee754_y1 (x);
|
|
/* quit if b is -inf */
|
|
GET_HIGH_WORD (high, b);
|
|
for (i = 1; i < n && high != 0xfff00000; i++)
|
|
{
|
|
temp = b;
|
|
b = ((double) (i + i) / x) * b - a;
|
|
GET_HIGH_WORD (high, b);
|
|
a = temp;
|
|
}
|
|
/* If B is +-Inf, set up errno accordingly. */
|
|
if (!isfinite (b))
|
|
__set_errno (ERANGE);
|
|
}
|
|
if (sign > 0)
|
|
ret = b;
|
|
else
|
|
ret = -b;
|
|
}
|
|
out:
|
|
if (isinf (ret))
|
|
ret = __copysign (DBL_MAX, ret) * DBL_MAX;
|
|
return ret;
|
|
}
|
|
strong_alias (__ieee754_yn, __yn_finite)
|