mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-07 18:10:07 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
745 lines
22 KiB
ArmAsm
745 lines
22 KiB
ArmAsm
.file "libm_sincosf.s"
|
|
|
|
|
|
// Copyright (c) 2002 - 2005, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
// History
|
|
//==============================================================
|
|
// 02/01/02 Initial version
|
|
// 02/18/02 Large arguments processing routine is excluded.
|
|
// External interface entry points are added
|
|
// 02/26/02 Added temporary return of results in r8, r9
|
|
// 03/13/02 Corrected restore of predicate registers
|
|
// 03/19/02 Added stack unwind around call to __libm_cisf_large
|
|
// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align
|
|
// 02/11/04 cisf is moved to the separate file.
|
|
// 03/31/05 Reformatted delimiters between data tables
|
|
|
|
// API
|
|
//==============================================================
|
|
// 1) void sincosf(float, float*s, float*c)
|
|
// 2) __libm_sincosf - internal LIBM function, that accepts
|
|
// argument in f8 and returns cosine through f8, sine through f9
|
|
|
|
//
|
|
// Overview of operation
|
|
//==============================================================
|
|
//
|
|
// Step 1
|
|
// ======
|
|
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
|
|
// divide x by pi/2^k.
|
|
// Multiply by 2^k/pi.
|
|
// nfloat = Round result to integer (round-to-nearest)
|
|
//
|
|
// r = x - nfloat * pi/2^k
|
|
// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
|
|
// pi/2^k is stored as two numbers that when added make pi/2^k.
|
|
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
|
|
// HIGH part is rounded to zero, LOW - to nearest
|
|
//
|
|
// x = (nfloat * pi/2^k) + r
|
|
// r is small enough that we can use a polynomial approximation
|
|
// and is referred to as the reduced argument.
|
|
//
|
|
// Step 3
|
|
// ======
|
|
// Take the unreduced part and remove the multiples of 2pi.
|
|
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
|
|
//
|
|
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
|
|
// N * 2^(k+1)
|
|
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
|
|
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
|
|
// nfloat * pi/2^k = N2pi + M * pi/2^k
|
|
//
|
|
//
|
|
// Sin(x) = Sin((nfloat * pi/2^k) + r)
|
|
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
|
|
//
|
|
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
|
|
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
|
|
// = Sin(Mpi/2^k)
|
|
//
|
|
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
|
|
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
|
|
// = Cos(Mpi/2^k)
|
|
//
|
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
|
//
|
|
//
|
|
// Step 4
|
|
// ======
|
|
// 0 <= M < 2^(k+1)
|
|
// There are 2^(k+1) Sin entries in a table.
|
|
// There are 2^(k+1) Cos entries in a table.
|
|
//
|
|
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
|
|
//
|
|
//
|
|
// Step 5
|
|
// ======
|
|
// Calculate Cos(r) and Sin(r) by polynomial approximation.
|
|
//
|
|
// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
|
|
// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
|
|
//
|
|
// and the coefficients q1, q2 and p1, p2 are stored in a table
|
|
//
|
|
//
|
|
// Calculate
|
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
|
//
|
|
// as follows
|
|
//
|
|
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
|
|
// rsq = r*r
|
|
//
|
|
//
|
|
// P = p1 + r^2p2
|
|
// Q = q1 + r^2q2
|
|
//
|
|
// rcub = r * rsq
|
|
// Sin(r) = r + rcub * P
|
|
// = r + r^3p1 + r^5p2 = Sin(r)
|
|
//
|
|
// P = r + rcub * P
|
|
//
|
|
// Answer = S[m] Cos(r) + C[m] P
|
|
//
|
|
// Cos(r) = 1 + rsq Q
|
|
// Cos(r) = 1 + r^2 Q
|
|
// Cos(r) = 1 + r^2 (q1 + r^2q2)
|
|
// Cos(r) = 1 + r^2q1 + r^4q2
|
|
//
|
|
// S[m] Cos(r) = S[m](1 + rsq Q)
|
|
// S[m] Cos(r) = S[m] + S[m] rsq Q
|
|
// S[m] Cos(r) = S[m] + s_rsq Q
|
|
// Q = S[m] + s_rsq Q
|
|
//
|
|
// Then,
|
|
//
|
|
// Answer = Q + C[m] P
|
|
|
|
|
|
// Registers used
|
|
//==============================================================
|
|
// general input registers:
|
|
// r14 -> r19
|
|
// r32 -> r49
|
|
|
|
// predicate registers used:
|
|
// p6 -> p14
|
|
|
|
// floating-point registers used
|
|
// f9 -> f15
|
|
// f32 -> f100
|
|
|
|
// Assembly macros
|
|
//==============================================================
|
|
|
|
cisf_Arg = f8
|
|
|
|
cisf_Sin_res = f9
|
|
cisf_Cos_res = f8
|
|
|
|
|
|
cisf_NORM_f8 = f10
|
|
cisf_W = f11
|
|
cisf_int_Nfloat = f12
|
|
cisf_Nfloat = f13
|
|
|
|
cisf_r = f14
|
|
cisf_r_exact = f68
|
|
cisf_rsq = f15
|
|
cisf_rcub = f32
|
|
|
|
cisf_Inv_Pi_by_16 = f33
|
|
cisf_Pi_by_16_hi = f34
|
|
cisf_Pi_by_16_lo = f35
|
|
|
|
cisf_Inv_Pi_by_64 = f36
|
|
cisf_Pi_by_64_hi = f37
|
|
cisf_Pi_by_64_lo = f38
|
|
|
|
|
|
cisf_P1 = f39
|
|
cisf_Q1 = f40
|
|
cisf_P2 = f41
|
|
cisf_Q2 = f42
|
|
cisf_P3 = f43
|
|
cisf_Q3 = f44
|
|
cisf_P4 = f45
|
|
cisf_Q4 = f46
|
|
|
|
cisf_P_temp1 = f47
|
|
cisf_P_temp2 = f48
|
|
|
|
cisf_Q_temp1 = f49
|
|
cisf_Q_temp2 = f50
|
|
|
|
cisf_P = f51
|
|
|
|
cisf_SIG_INV_PI_BY_16_2TO61 = f52
|
|
cisf_RSHF_2TO61 = f53
|
|
cisf_RSHF = f54
|
|
cisf_2TOM61 = f55
|
|
cisf_NFLOAT = f56
|
|
cisf_W_2TO61_RSH = f57
|
|
|
|
cisf_tmp = f58
|
|
|
|
cisf_Sm_sin = f59
|
|
cisf_Cm_sin = f60
|
|
|
|
cisf_Sm_cos = f61
|
|
cisf_Cm_cos = f62
|
|
|
|
cisf_srsq_sin = f63
|
|
cisf_srsq_cos = f64
|
|
|
|
cisf_Q_sin = f65
|
|
cisf_Q_cos = f66
|
|
cisf_Q = f67
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
cisf_pResSin = r33
|
|
cisf_pResCos = r34
|
|
|
|
cisf_exp_limit = r35
|
|
cisf_r_signexp = r36
|
|
cisf_AD_beta_table = r37
|
|
cisf_r_sincos = r38
|
|
|
|
cisf_r_exp = r39
|
|
cisf_r_17_ones = r40
|
|
|
|
cisf_GR_sig_inv_pi_by_16 = r14
|
|
cisf_GR_rshf_2to61 = r15
|
|
cisf_GR_rshf = r16
|
|
cisf_GR_exp_2tom61 = r17
|
|
cisf_GR_n = r18
|
|
|
|
cisf_GR_n_sin = r19
|
|
cisf_GR_m_sin = r41
|
|
cisf_GR_32m_sin = r41
|
|
|
|
cisf_GR_n_cos = r42
|
|
cisf_GR_m_cos = r43
|
|
cisf_GR_32m_cos = r43
|
|
|
|
cisf_AD_2_sin = r44
|
|
cisf_AD_2_cos = r45
|
|
|
|
cisf_gr_tmp = r46
|
|
GR_SAVE_B0 = r47
|
|
GR_SAVE_GP = r48
|
|
rB0_SAVED = r49
|
|
GR_SAVE_PFS = r50
|
|
GR_SAVE_PR = r51
|
|
cisf_AD_1 = r52
|
|
|
|
RODATA
|
|
|
|
.align 16
|
|
// Pi/16 parts
|
|
LOCAL_OBJECT_START(double_cisf_pi)
|
|
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
|
|
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
|
|
LOCAL_OBJECT_END(double_cisf_pi)
|
|
|
|
// Coefficients for polynomials
|
|
LOCAL_OBJECT_START(double_cisf_pq_k4)
|
|
data8 0x3F810FABB668E9A2 // P2
|
|
data8 0x3FA552E3D6DE75C9 // Q2
|
|
data8 0xBFC555554447BC7F // P1
|
|
data8 0xBFDFFFFFC447610A // Q1
|
|
LOCAL_OBJECT_END(double_cisf_pq_k4)
|
|
|
|
// Sincos table (S[m], C[m])
|
|
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
|
|
data8 0x0000000000000000 // sin ( 0 Pi / 16 )
|
|
data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
|
|
//
|
|
data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
|
|
data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
|
|
//
|
|
data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
|
|
data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
|
|
//
|
|
data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
|
|
data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
|
|
//
|
|
data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
|
|
data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
|
|
//
|
|
data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
|
|
data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
|
|
//
|
|
data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
|
|
data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
|
|
//
|
|
data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
|
|
data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
|
|
//
|
|
data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
|
|
data8 0x0000000000000000 // cos ( 8 Pi / 16 )
|
|
//
|
|
data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
|
|
data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
|
|
//
|
|
data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
|
|
data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
|
|
//
|
|
data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
|
|
data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
|
|
//
|
|
data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
|
|
data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
|
|
//
|
|
data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
|
|
data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
|
|
//
|
|
data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
|
|
data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
|
|
//
|
|
data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
|
|
data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
|
|
//
|
|
data8 0x0000000000000000 // sin ( 16 Pi / 16 )
|
|
data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
|
|
//
|
|
data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
|
|
data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
|
|
//
|
|
data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
|
|
data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
|
|
//
|
|
data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
|
|
data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
|
|
//
|
|
data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
|
|
data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
|
|
//
|
|
data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
|
|
data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
|
|
//
|
|
data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
|
|
data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
|
|
//
|
|
data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
|
|
data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
|
|
//
|
|
data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
|
|
data8 0x0000000000000000 // cos ( 24 Pi / 16 )
|
|
//
|
|
data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
|
|
data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
|
|
//
|
|
data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
|
|
data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
|
|
//
|
|
data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
|
|
data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
|
|
//
|
|
data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
|
|
data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
|
|
//
|
|
data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
|
|
data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
|
|
//
|
|
data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
|
|
data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
|
|
//
|
|
data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
|
|
data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
|
|
//
|
|
data8 0x0000000000000000 // sin ( 32 Pi / 16 )
|
|
data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
|
|
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
|
|
|
|
.section .text
|
|
|
|
GLOBAL_IEEE754_ENTRY(sincosf)
|
|
// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
|
|
{ .mlx
|
|
alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0
|
|
movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
|
|
|
|
}
|
|
// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
|
|
{ .mlx
|
|
addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
|
|
movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
|
|
};;
|
|
|
|
{ .mfi
|
|
ld8 cisf_AD_1 = [cisf_AD_1]
|
|
fnorm.s1 cisf_NORM_f8 = cisf_Arg
|
|
cmp.eq p13, p14 = r0, r0 // p13 set for sincos
|
|
}
|
|
// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
|
|
{ .mib
|
|
mov cisf_GR_exp_2tom61 = 0xffff-61
|
|
nop.i 0
|
|
br.cond.sptk _CISF_COMMON
|
|
};;
|
|
GLOBAL_IEEE754_END(sincosf)
|
|
libm_alias_float_other (__sincos, sincos)
|
|
|
|
GLOBAL_LIBM_ENTRY(__libm_sincosf)
|
|
{ .mlx
|
|
// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
|
|
alloc GR_SAVE_PFS = ar.pfs,0,21,0,0
|
|
movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
|
|
}
|
|
// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
|
|
{ .mlx
|
|
addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
|
|
movl cisf_GR_rshf_2to61 = 0x47b8000000000000
|
|
};;
|
|
|
|
// p14 set for __libm_sincos and cis
|
|
{ .mfi
|
|
ld8 cisf_AD_1 = [cisf_AD_1]
|
|
fnorm.s1 cisf_NORM_f8 = cisf_Arg
|
|
cmp.eq p14, p13 = r0, r0
|
|
}
|
|
// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
|
|
{ .mib
|
|
mov cisf_GR_exp_2tom61 = 0xffff-61
|
|
nop.i 0
|
|
nop.b 0
|
|
};;
|
|
|
|
_CISF_COMMON:
|
|
// Form two constants we need
|
|
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
|
|
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
|
|
// fcmp used to set denormal, and invalid on snans
|
|
{ .mfi
|
|
setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
|
|
fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan
|
|
addl cisf_gr_tmp = -1, r0
|
|
}
|
|
// cisf_GR_rshf = 1.1000 2^63 for right shift
|
|
{ .mlx
|
|
setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61
|
|
movl cisf_GR_rshf = 0x43e8000000000000
|
|
};;
|
|
|
|
// Form another constant
|
|
// 2^-61 for scaling Nfloat
|
|
// 0x10017 is register_bias + 24.
|
|
// So if f8 >= 2^24, go to large args routine
|
|
{ .mmi
|
|
getf.exp cisf_r_signexp = cisf_Arg
|
|
setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61
|
|
mov cisf_exp_limit = 0x10017
|
|
};;
|
|
|
|
// Load the two pieces of pi/16
|
|
// Form another constant
|
|
// 1.1000...000 * 2^63, the right shift constant
|
|
{ .mmb
|
|
ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16
|
|
setf.d cisf_RSHF = cisf_GR_rshf
|
|
(p6) br.cond.spnt _CISF_SPECIAL_ARGS
|
|
};;
|
|
|
|
{ .mmi
|
|
ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16
|
|
setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set
|
|
nop.i 0
|
|
};;
|
|
|
|
// Start loading P, Q coefficients
|
|
{ .mmi
|
|
ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16
|
|
nop.m 0
|
|
dep.z cisf_r_exp = cisf_r_signexp, 0, 17
|
|
};;
|
|
|
|
// p10 is true if we must call routines to handle larger arguments
|
|
// p10 is true if f8 exp is >= 0x10017
|
|
{ .mmb
|
|
ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16
|
|
cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit
|
|
(p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path
|
|
};;
|
|
|
|
// cisf_W = x * cisf_Inv_Pi_by_16
|
|
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
|
|
// rightmost bits of significand
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
|
|
nop.i 0
|
|
};;
|
|
|
|
// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
|
|
{ .mfi
|
|
nop.m 0
|
|
fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
|
|
nop.i 0
|
|
};;
|
|
|
|
// N = (int)cisf_int_Nfloat
|
|
{ .mfi
|
|
getf.sig cisf_GR_n = cisf_W_2TO61_RSH
|
|
nop.f 0
|
|
nop.i 0
|
|
};;
|
|
|
|
// Add 2^(k-1) (which is in cisf_r_sincos) to N
|
|
// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
|
|
// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
|
|
{ .mfi
|
|
add cisf_GR_n_cos = 0x8, cisf_GR_n
|
|
fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
|
|
nop.i 0
|
|
};;
|
|
|
|
//Get M (least k+1 bits of N)
|
|
{ .mmi
|
|
and cisf_GR_m_sin = 0x1f,cisf_GR_n
|
|
and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mmi
|
|
shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1
|
|
shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1
|
|
nop.i 0
|
|
};;
|
|
|
|
// den. input to set uflow
|
|
{ .mmf
|
|
ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
|
|
ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
|
|
fclass.m.unc p10,p0 = cisf_Arg,0x0b
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mmf
|
|
nop.m 0
|
|
nop.m 0
|
|
fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
|
|
nop.i 0
|
|
}
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
|
|
nop.i 0
|
|
};;
|
|
|
|
// If den. arg, force underflow to be set
|
|
{ .mfi
|
|
nop.m 0
|
|
(p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg
|
|
nop.i 0
|
|
};;
|
|
|
|
//Final sin
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin
|
|
nop.i 0
|
|
}
|
|
//Final cos
|
|
{ .mfb
|
|
nop.m 0
|
|
fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos
|
|
(p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path
|
|
};;
|
|
|
|
{ .mmb
|
|
stfs [cisf_pResSin] = cisf_Sin_res
|
|
stfs [cisf_pResCos] = cisf_Cos_res
|
|
br.ret.sptk b0 // common exit for sincos main path
|
|
};;
|
|
|
|
_CISF_SPECIAL_ARGS:
|
|
// sinf(+/-0) = +/-0
|
|
// sinf(Inf) = NaN
|
|
// sinf(NaN) = NaN
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
|
|
nop.i 999
|
|
};;
|
|
|
|
// cosf(+/-0) = 1.0
|
|
// cosf(Inf) = NaN
|
|
// cosf(NaN) = NaN
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
|
|
(p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path
|
|
};;
|
|
|
|
{ .mmb
|
|
stfs [cisf_pResSin] = cisf_Sin_res
|
|
stfs [cisf_pResCos] = cisf_Cos_res
|
|
br.ret.sptk b0 // special exit for sincos main path
|
|
};;
|
|
|
|
// exit for sincos
|
|
// NOTE! r8 and r9 used only because of compiler issue
|
|
// connected with float point complex function arguments pass
|
|
// After fix of this issue this operations can be deleted
|
|
_CISF_RETURN:
|
|
{ .mmb
|
|
getf.s r8 = cisf_Cos_res
|
|
getf.s r9 = cisf_Sin_res
|
|
br.ret.sptk b0 // exit for sincos
|
|
};;
|
|
GLOBAL_LIBM_END(__libm_sincosf)
|
|
|
|
//// |x| > 2^24 path ///////
|
|
.proc _CISF_LARGE_ARGS
|
|
_CISF_LARGE_ARGS:
|
|
.prologue
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
.save ar.pfs, GR_SAVE_PFS
|
|
mov GR_SAVE_PFS = ar.pfs
|
|
};;
|
|
|
|
{ .mfi
|
|
mov GR_SAVE_GP = gp
|
|
nop.f 0
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0 = b0
|
|
};;
|
|
|
|
.body
|
|
// Call of huge arguments sincos
|
|
{ .mib
|
|
nop.m 0
|
|
mov GR_SAVE_PR = pr
|
|
br.call.sptk b0 = __libm_sincos_large
|
|
};;
|
|
|
|
{ .mfi
|
|
mov gp = GR_SAVE_GP
|
|
nop.f 0
|
|
mov pr = GR_SAVE_PR, 0x1fffe
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
nop.f 0
|
|
mov b0 = GR_SAVE_B0
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 0
|
|
fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0
|
|
mov ar.pfs = GR_SAVE_PFS
|
|
}
|
|
// exit for |x| > 2^24 path (__libm_sincos and cis)
|
|
{ .mfb
|
|
nop.m 0
|
|
fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0
|
|
(p14) br.cond.sptk _CISF_RETURN
|
|
};;
|
|
|
|
{ .mmb
|
|
stfs [cisf_pResSin] = cisf_Sin_res
|
|
stfs [cisf_pResCos] = cisf_Cos_res
|
|
br.ret.sptk b0 // exit for sincos |x| > 2^24 path
|
|
};;
|
|
|
|
.endp _CISF_LARGE_ARGS
|
|
|
|
.type __libm_sincos_large#,@function
|
|
.global __libm_sincos_large#
|