glibc/sysdeps/ieee754/ldbl-128ibm/e_asinl.c
Joseph Myers b4d5b8b021 Do not include math-barriers.h in math_private.h.
This patch continues the math_private.h cleanup by stopping
math_private.h from including math-barriers.h and making the users of
the barrier macros include the latter header directly.  No attempt is
made to remove any math_private.h includes that are now unused, except
in strtod_l.c where that is done to avoid line number changes in
assertions, so that installed stripped shared libraries can be
compared before and after the patch.  (I think the floating-point
environment support in math_private.h should also move out - some
architectures already have fenv_private.h as an architecture-internal
header included from their math_private.h - and after moving that out
might be a better time to identify unused math_private.h includes.)

Tested for x86_64 and x86, and tested with build-many-glibcs.py that
installed stripped shared libraries are unchanged by the patch.

	* sysdeps/generic/math_private.h: Do not include
	<math-barriers.h>.
	* stdlib/strtod_l.c: Include <math-barriers.h> instead of
	<math_private.h>.
	* math/fromfp.h: Include <math-barriers.h>.
	* math/math-narrow.h: Likewise.
	* math/s_nextafter.c: Likewise.
	* math/s_nexttowardf.c: Likewise.
	* sysdeps/aarch64/fpu/s_llrint.c: Likewise.
	* sysdeps/aarch64/fpu/s_llrintf.c: Likewise.
	* sysdeps/aarch64/fpu/s_lrint.c: Likewise.
	* sysdeps/aarch64/fpu/s_lrintf.c: Likewise.
	* sysdeps/i386/fpu/s_nextafterl.c: Likewise.
	* sysdeps/i386/fpu/s_nexttoward.c: Likewise.
	* sysdeps/i386/fpu/s_nexttowardf.c: Likewise.
	* sysdeps/ieee754/dbl-64/e_atan2.c: Likewise.
	* sysdeps/ieee754/dbl-64/e_atanh.c: Likewise.
	* sysdeps/ieee754/dbl-64/e_exp.c: Likewise.
	* sysdeps/ieee754/dbl-64/e_exp2.c: Likewise.
	* sysdeps/ieee754/dbl-64/e_j0.c: Likewise.
	* sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_expm1.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_log1p.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_nearbyint.c: Likewise.
	* sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c: Likewise.
	* sysdeps/ieee754/flt-32/e_atanhf.c: Likewise.
	* sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
	* sysdeps/ieee754/flt-32/s_expm1f.c: Likewise.
	* sysdeps/ieee754/flt-32/s_log1pf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_nearbyintf.c: Likewise.
	* sysdeps/ieee754/flt-32/s_nextafterf.c: Likewise.
	* sysdeps/ieee754/k_standardl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/e_asinl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/e_expl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/e_powl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_fmal.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_nearbyintl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_asinl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_fmal.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/e_atanhl.c: Likewise.
	* sysdeps/ieee754/ldbl-96/e_j0l.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Likewise.
	* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Likewise.
	* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Likewise.
	* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Likewise.
2018-05-11 15:11:38 +00:00

252 lines
7.2 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
Long double expansions are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under the
following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* Between .5 and .625 the approximation is
* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
* For x in [0.625,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#include <float.h>
#include <math.h>
#include <math-barriers.h>
#include <math_private.h>
#include <math-underflow.h>
static const long double
one = 1.0L,
huge = 1.0e+300L,
pio2_hi = 1.5707963267948966192313216916397514420986L,
pio2_lo = 4.3359050650618905123985220130216759843812E-35L,
pio4_hi = 7.8539816339744830961566084581987569936977E-1L,
/* coefficient for R(x^2) */
/* asin(x) = x + x^3 pS(x^2) / qS(x^2)
0 <= x <= 0.5
peak relative error 1.9e-35 */
pS0 = -8.358099012470680544198472400254596543711E2L,
pS1 = 3.674973957689619490312782828051860366493E3L,
pS2 = -6.730729094812979665807581609853656623219E3L,
pS3 = 6.643843795209060298375552684423454077633E3L,
pS4 = -3.817341990928606692235481812252049415993E3L,
pS5 = 1.284635388402653715636722822195716476156E3L,
pS6 = -2.410736125231549204856567737329112037867E2L,
pS7 = 2.219191969382402856557594215833622156220E1L,
pS8 = -7.249056260830627156600112195061001036533E-1L,
pS9 = 1.055923570937755300061509030361395604448E-3L,
qS0 = -5.014859407482408326519083440151745519205E3L,
qS1 = 2.430653047950480068881028451580393430537E4L,
qS2 = -4.997904737193653607449250593976069726962E4L,
qS3 = 5.675712336110456923807959930107347511086E4L,
qS4 = -3.881523118339661268482937768522572588022E4L,
qS5 = 1.634202194895541569749717032234510811216E4L,
qS6 = -4.151452662440709301601820849901296953752E3L,
qS7 = 5.956050864057192019085175976175695342168E2L,
qS8 = -4.175375777334867025769346564600396877176E1L,
/* 1.000000000000000000000000000000000000000E0 */
/* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
-0.0625 <= x <= 0.0625
peak relative error 3.3e-35 */
rS0 = -5.619049346208901520945464704848780243887E0L,
rS1 = 4.460504162777731472539175700169871920352E1L,
rS2 = -1.317669505315409261479577040530751477488E2L,
rS3 = 1.626532582423661989632442410808596009227E2L,
rS4 = -3.144806644195158614904369445440583873264E1L,
rS5 = -9.806674443470740708765165604769099559553E1L,
rS6 = 5.708468492052010816555762842394927806920E1L,
rS7 = 1.396540499232262112248553357962639431922E1L,
rS8 = -1.126243289311910363001762058295832610344E1L,
rS9 = -4.956179821329901954211277873774472383512E-1L,
rS10 = 3.313227657082367169241333738391762525780E-1L,
sS0 = -4.645814742084009935700221277307007679325E0L,
sS1 = 3.879074822457694323970438316317961918430E1L,
sS2 = -1.221986588013474694623973554726201001066E2L,
sS3 = 1.658821150347718105012079876756201905822E2L,
sS4 = -4.804379630977558197953176474426239748977E1L,
sS5 = -1.004296417397316948114344573811562952793E2L,
sS6 = 7.530281592861320234941101403870010111138E1L,
sS7 = 1.270735595411673647119592092304357226607E1L,
sS8 = -1.815144839646376500705105967064792930282E1L,
sS9 = -7.821597334910963922204235247786840828217E-2L,
/* 1.000000000000000000000000000000000000000E0 */
asinr5625 = 5.9740641664535021430381036628424864397707E-1L;
long double
__ieee754_asinl (long double x)
{
long double a, t, w, p, q, c, r, s;
int flag;
if (__glibc_unlikely (isnan (x)))
return x + x;
flag = 0;
a = __builtin_fabsl (x);
if (a == 1.0L) /* |x|>= 1 */
return x * pio2_hi + x * pio2_lo; /* asin(1)=+-pi/2 with inexact */
else if (a >= 1.0L)
return (x - x) / (x - x); /* asin(|x|>1) is NaN */
else if (a < 0.5L)
{
if (a < 6.938893903907228e-18L) /* |x| < 2**-57 */
{
math_check_force_underflow (x);
long double force_inexact = huge + x;
math_force_eval (force_inexact);
return x; /* return x with inexact if x!=0 */
}
else
{
t = x * x;
/* Mark to use pS, qS later on. */
flag = 1;
}
}
else if (a < 0.625L)
{
t = a - 0.5625;
p = ((((((((((rS10 * t
+ rS9) * t
+ rS8) * t
+ rS7) * t
+ rS6) * t
+ rS5) * t
+ rS4) * t
+ rS3) * t
+ rS2) * t
+ rS1) * t
+ rS0) * t;
q = ((((((((( t
+ sS9) * t
+ sS8) * t
+ sS7) * t
+ sS6) * t
+ sS5) * t
+ sS4) * t
+ sS3) * t
+ sS2) * t
+ sS1) * t
+ sS0;
t = asinr5625 + p / q;
if (x > 0.0L)
return t;
else
return -t;
}
else
{
/* 1 > |x| >= 0.625 */
w = one - a;
t = w * 0.5;
}
p = (((((((((pS9 * t
+ pS8) * t
+ pS7) * t
+ pS6) * t
+ pS5) * t
+ pS4) * t
+ pS3) * t
+ pS2) * t
+ pS1) * t
+ pS0) * t;
q = (((((((( t
+ qS8) * t
+ qS7) * t
+ qS6) * t
+ qS5) * t
+ qS4) * t
+ qS3) * t
+ qS2) * t
+ qS1) * t
+ qS0;
if (flag) /* 2^-57 < |x| < 0.5 */
{
w = p / q;
return x + x * w;
}
s = sqrtl (t);
if (a > 0.975L)
{
w = p / q;
t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
}
else
{
w = ldbl_high (s);
c = (t - w * w) / (s + w);
r = p / q;
p = 2.0 * s * r - (pio2_lo - 2.0 * c);
q = pio4_hi - 2.0 * w;
t = pio4_hi - (p - q);
}
if (x > 0.0L)
return t;
else
return -t;
}
strong_alias (__ieee754_asinl, __asinl_finite)